Skip to main content
Log in

Genetic Relationship of Curcuma Species from Northeast India Using PCR-Based Markers

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Molecular genetic fingerprints of nine Curcuma species from Northeast India were developed using PCR-based markers. The aim involves elucidating there intra- and inter-specific genetic diversity important for utilization, management, and conservation. Twelve random amplified polymorphic DNA (RAPD), 19 Inter simple sequence repeats (ISSRs), and four amplified fragment length polymorphism (AFLP) primers produced 266 polymorphic fragments. ISSR confirmed maximum polymorphism of 98.55% whereas RAPD and AFLP showed 93.22 and 97.27%, respectively. Marker index and polymorphic information content varied in the range of 8.64–48.1, 19.75–48.14, and 25–28 and 0.17–0.48, 0.19–0.48, and 0.25–0.29 for RAPD, ISSR, and AFLP markers, respectively. The average value of number of observed alleles, number of effective alleles, mean Nei’s gene diversity, and Shannon’s information index were 1.93–1.98, 1.37–1.62, 0.23–0.36, and 0.38–0.50, respectively, for three DNA markers used. Dendrograms based on three molecular data using unweighted pair group method with arithmetic mean (UPGMA) was congruent and classified the Curcuma species into two major clusters. Cophenetic correlation coefficient between dendrogram and original similarity matrix were significant for RAPD (r = 0.96), ISSR (r = 0.94), and AFLP (r = 0.97). Clustering was further supported by principle coordinate analysis. High genetic polymorphism documented is significant for conservation and further improvement of Curcuma species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

EDTA:

Ethylenediaminetetraacetic acid

EtBr:

Ethidium bromide

ISSR:

Inter simple sequence repeat

PCA:

Principle coordinate analysis

PIC:

Polymorphic information content

PCR:

Polymerase chain reaction

RAPD:

Random amplified polymorphic DNA

TE:

Tris–EDTA buffer

UPGMA:

Unweighted pair group method with arithmetic mean

References

  1. Velayudhan, K. C., Muralidharan, V. K., Amalraj, V. A., Gautam, P. L., Mandal, S., & Kumar, D. (1999). Curcuma genetic resources. Scientific Monograph No. 4. National Bureau of Plant Genetic Resources, New Delhi, pp. 149.

  2. Mridula, K. R., & Jayachandran, B. K. (2001). Quality of mango-ginger (Curcuma amada Roxb.) as influenced by mineral nutrition. Journal of Tropical Agriculture, 39, 182–183.

    Google Scholar 

  3. Matsuda, H., Tewtrakul, S., Morikawa, T., Nakamura, A., & Yoshikawa, M. (2004). Anti-allergic principles from Thai zedoary: Structural requirements of curcuminoids for inhibition of degranulation and effect on the release of TNF-alpha and IL-4 in RBL-2H3 cells. Bioorganic & Medicinal Chemistry, 12, 5891–5898.

    Article  CAS  Google Scholar 

  4. Sarma, G. C., & Kalita, S. (2005). Zingiberaceae of Assam: Their taxonomy and utilization. PhD Thesis, Botany Department, Gauhati University, Assam.

  5. Islam, M. A., Meister, A., Schubert, V., Kloppstech, K., & Esch, E. (2007). Genetic diversity and cytogenetic analyses in Curcuma zedoaria (Christm.) Roscoe. from Bangladesh. Genetic Resources and Crop Evolution, 54, 149–156.

    Article  Google Scholar 

  6. Diwan, N., & Cregan, P. B. (1997). Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theoretical and Applied Genetics, 95, 723–733.

    Article  CAS  Google Scholar 

  7. Prasad, M., Varshney, R. K., Roy, J. K., & Balyan, H. S. (2000). The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theoretical and Applied Genetics, 100, 584–592.

    CAS  Google Scholar 

  8. Zhebentyayeva, T. N., Reighard, G. L., Gorina, V. M., & Abbott, A. G. (2003). Simple sequence repeats (SSR) analysis for assessment of genetic variability in apricot germplasm. Theoretical and Applied Genetics, 106, 435–444.

    CAS  Google Scholar 

  9. Belaj, A., Satovic, Z., Cipriani, G., Baldoni, L., Testolin, R., Rallo, L., et al. (2003). Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theoretical and Applied Genetics, 107, 736–744.

    Article  CAS  Google Scholar 

  10. Awasthi, A. K., Nagaraja, G. M., Naik, G. V., Kanginakudru, S., Thangavelu, K., & Nagaraju, J. (2004). Genetic diversity and relationships in mulberry (genus Morus) as revealed by RAPD and SSR marker assays. BMC Genetics, 5, 1–7.

    Article  Google Scholar 

  11. Sharma, A., Namedo, A. G., & Mahadik, K. R. (2008). Molecular markers: New prospects in plant genome analysis. Pharmacognosy Review, 2(3), 23–34.

    CAS  Google Scholar 

  12. Rangan, L., Das, A., Kesari, V., Agarwal, S., & Sarma, G. C. (2008). Use of DNA barcodes to identify Curcuma species of Northeast India. International conference of emerging technologies and applications in engineering, technology and sciences, Rajkot (pp. 2116–2120).

  13. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531–6535.

    Article  CAS  Google Scholar 

  14. Ratnaparkhe, M. B., Gupta, V. S., Venmurthy, M. R., & Ranjekar, P. K. (1995). Genetic fingerprinting of pigeon pea (Cajanus cajan L., Millsp) and its wild relatives using RAPD markers. Theoretical and Applied Genetics, 91, 893–898.

    Article  CAS  Google Scholar 

  15. Shasany, A. K., Aruna, V., Darokar, M. P., Kalra, A., Bahl, J. R., Bansal, R. P., et al. (2002). Genetic diversity and species relationship in Asparagus spp. using RAPD analysis. Journal of Medicinal and Aromatic Plant Sciences, 24, 729–732.

    CAS  Google Scholar 

  16. Fico, G., Spada, A., Bracab, A., Agradic, E., Morellib, I., & Tomea, F. (2003). RAPD analysis and flavonoid composition of Aconitum as an aid for taxonomic discrimination. Biochemical Systematics and Ecology, 31, 293–301.

    Article  CAS  Google Scholar 

  17. Nayak, S., Nayak, P. K., & Acharya, L. (2005). Assessment of genetic diversity among 16 promising cultivars of zinger using cytological and molecular markers. Zeitschrift für Naturforschung, 60C, 485–492.

    Google Scholar 

  18. Saritnum, O., Minami, M., Matsushima, K., Nemoto, K., & Sruamsiri, P., (2005). Genetic diversity of galanga (Alpina spp.) in Thailand as determined by randomly amplified polymorphic DNA markers. 10th International congress on SABRAO, August 22–23, Tsukuba, Japan.

  19. Rafalski, J. A., Vogel, J. M., Morgante, M., Powel, W., Andre, C., & Tingey, S. V. (1996). Generating new DNA markers in plants. In B. Birren & E. Lai (Eds.), Non-mammalian genomic analysis: A practical guide. New York: Academic Press.

    Google Scholar 

  20. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., et al. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2, 225–238.

    Article  CAS  Google Scholar 

  21. Gutierrez, M. V., VazPatto, M. C., Huguet, T., Cubero, J. I., Moreno, M. T., & Torres, A. M. (2005). Cross specific amplification of Medicago trancatula microsatellites across three major pulse crops. Theoretical and Applied Genetics, 110, 1210–1217.

    Article  CAS  Google Scholar 

  22. Varshney, R. K., Thiel, T., Stein, N., Langridge, P., & Graner, A. (2002). In silico analysis of frequency and distribution of microsatellites in ESTs of some cereal species. Cellular and Molecular Biology Letters, 7, 537–546.

    CAS  Google Scholar 

  23. Jatoi, S. A., Kikuchi, A., Yi, S. S., Naing, K. W., Yamanaka, S., Junko, A., et al. (2006). Use of SSR markers as RAPD markers for genetic diversity analysis in Zingiberaceae. Breeding Science, 56, 107–111.

    Article  CAS  Google Scholar 

  24. Arunyawat, U. (1997). Random amplified polymorphic DNA technique for genetic analysis of Curcuma spp. MS Thesis, Chiang Mai University, Chiang Mai, Thailand, pp. 70.

  25. Syamkumar, S., & Sasikumar, B. (2007). Molecular marker based genetic diversity analysis of Curcuma species from India. Scientia Horticulturae, 112, 235–241.

    Article  CAS  Google Scholar 

  26. Kesari, V., Das, A., & Rangan, L. (2009). Physico-chemical characterization and microbial assay from seed oil of Pongamia pinnata, potential biofuel crop. Biomass and Bioenergy, 33, 1724–1728.

    Article  CAS  Google Scholar 

  27. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., et al. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.

    Article  CAS  Google Scholar 

  28. Anderson, J. A., Churchill, G. A., Autrique, J. E., Tanksley, S. D., & Sorrells, M. E. (1993). Optimizing parental selection for genetic linkage maps. Genome, 36, 181–186.

    Article  CAS  Google Scholar 

  29. Yeh, F. C., Yang, R. C., Boyle, T. B. J., Ye, Z. H., & Mao, J. X. (1997). POPGENE, the user friendly shareware for population genetic analysis. Alberta: Molecular Biology and Biotechnology Centre, University of Alberta.

    Google Scholar 

  30. Dice, L. R. (1945). Measures of the amount of ecological association between species. Ecology, 26, 297–302.

    Article  Google Scholar 

  31. Sneath, P. H. A., & Sokal, R. R. (1973). Numerical taxonomy. San Francisco: W. H. Freeman and Company.

    Google Scholar 

  32. Rohlf, F. J. (2002). NTSYSPC. Numerical taxonomy system. New York: Exter software.

    Google Scholar 

  33. Mantel, N. (1967). The detection of disease clustering and generalized regression approaches. Cancer Research, 27, 209–220.

    CAS  Google Scholar 

  34. Paisooksantivatana, Y., Kako, S., & Seko, H. (2001). Genetic diversity of Curcuma alismatifolia Gagnep (Zingiberaceae) in Thailand as revealed by allozyme polymorphism. Genetic Resources and Crop Evolution, 48, 459–465.

    Article  Google Scholar 

  35. Jiang, H., Xie, Z., Koo, H. J., Mclaughhn, S. P., Timmermann, B. N., & Gang, D. R. (2006). Metabolic profiling and phylogenetic analysis of medicinal Zingiber species tools for authentication of ginger (Zingiber officinale). Phytochemistry, 67, 1673–1685.

    Article  CAS  Google Scholar 

  36. Zhou, X., Zhangwan, L., Liang, G., Zhub, J., Wang, D., & Cai, Z. (2007). Analysis of volatile components of Curcuma sichuanensis X. X. Chen by gas chromatography–mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 43, 440–444.

    Article  CAS  Google Scholar 

  37. Policegoudra, R. S., & Aradhya, S. M. (2008). Biochemical changes and antioxidant activity of mango ginger (Curcuma amada Roxb.) rhizomes during post harvest storage at different temperatures. Postharvest Biology and Technology, 46, 189–194.

    Article  Google Scholar 

  38. Paramasivam, M., Poi, R., Banerjee, H., & Bandyopadhyay, A. (2009). High-performance thin layer chromatographic method for quantitative determination of curcuminoids in Curcuma longa germplasm. Food Chemistry, 113, 640–644.

    Article  CAS  Google Scholar 

  39. Noli, E., Cont, S., Maccaferri, M., & Sanguineti, M. C. (1997). Molecular characterization of tomato cultivars. Seed Science and Technology, 27, 1–10.

    Google Scholar 

  40. Sasikumar, B. (2005). Genetic resources of Curcuma: Diversity, characterization and utilisation. Plant Genetic Resources, 3, 230–251.

    Article  CAS  Google Scholar 

  41. Hussain, Z., Tyagi, R. K., Sharma, R., & Agarwal, A. (2008). Genetic diversity in in vitro-conserved germplasm of Curcuma L. as revealed by RAPD markers. Biologia Plantarum, 52(4), 627–633.

    Article  CAS  Google Scholar 

  42. Muthusamy, S., Kanagarajan, S., & Ponnusamy, S. (2008). Efficiency of RAPD and ISSR markers system in accessing genetic variation of rice bean (Vigna umbellata) landraces. Electronic Journal of Biotechnology, 11(3), 1–10.

    Article  Google Scholar 

  43. Fernandez, M. E., Figueiras, A. M., & Benito, C. (2002). The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theoretical and Applied Genetics, 104, 845–851.

    Article  CAS  Google Scholar 

  44. Ovesna, J., Polakova, K., & Lisova, L. (2002). DNA analysis and their applications in plant breeding. Czech Journal of Genetics and Plant Breeding, 38, 29–40.

    Google Scholar 

  45. Behera, T. K., Gaikward, A. B., Singh, A. K., & Staub, J. E. (2008). Relative efficiency of DNA markers (RAPDISSR and AFLP) in detecting genetic diversity of bitter gourd (Momordica charantia L.). Journal of Science of Food and Agriculture, 88, 733–737.

    Article  CAS  Google Scholar 

  46. Sbabou, L., Brhada, F., Alami, I. T., & Maltouf, A. F. (2010). Genetic diversity of Moroccan Lupinus germplasm investigated using ISSR and AFLP markers. International Journal of Agriculture and Biology, 12(1), 26–32.

    CAS  Google Scholar 

  47. Kavitha, P. G., Kiran, A. G., Dinesh Raj, R., Sabu, M., & Thomas, G. (2010). Amplified fragment length polymorphism analysis unravel a striking difference in the intraspecific genetic diversity of four species of genus Zingiber Boehm. from the Western Ghats, south India. Current Science, 98(2), 242–247.

    Google Scholar 

  48. Yang, G. P., Maroof, M., Xu, C., Zhang, Q., & Biyashev, R. (1994). Comparative analysis of microsatellite DNA polymorphism inland races and cultivars of rice. Molecular and General Genetics, 245, 187–194.

    CAS  Google Scholar 

  49. Schulman, A. H. (2007). Molecular markers to assess genetic diversity. Euphytica, 158, 313–321.

    Article  CAS  Google Scholar 

  50. Vanijajiva, O., Sirirugsa, P., & Suvachittanont, W. (2005). Confirmation of relationships among Boesenbergia (zingiberaceae) and related genera by RAPD. Biochemical Systematics and Ecology, 33, 159–170.

    Article  CAS  Google Scholar 

  51. Saowaluck, B., & Paisooksantivatana, Y. (2010). Study of clonally propagated cassumunar ginger (Zingiber montanum (Koenig) Link ex Dietr.) and its relation of wild Zingiber species from Thailand revealed by RAPD markers. Genetic Resources and Crop Evolution, 57, 405–414.

    Article  Google Scholar 

  52. Islam, M. A., Kloppstech, K., & Esch, E. (2005). Population genetic diversity of Curcuma zedoaria (Christm.) Roscoe—a conservation prioritized medicinal plant in Bangladesh. Conservation Genetics, 6, 1027–1033.

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Ministry of Human Resources Development (MHRD), Government of India for fellowship. Thanks to Dr Sarma, Gauhati University for kind supply of study material. LR acknowledges funding by the Ministry of Information Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latha Rangan.

Additional information

Archana Das and Vigya Kesari equally contributed to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, A., Kesari, V., Satyanarayana, V.M. et al. Genetic Relationship of Curcuma Species from Northeast India Using PCR-Based Markers. Mol Biotechnol 49, 65–76 (2011). https://doi.org/10.1007/s12033-011-9379-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9379-5

Keywords

Navigation