Skip to main content

Advertisement

Log in

Analysis of Novel Nonviral Gene Transfer Systems for Gene Delivery to Cells of the Musculoskeletal System

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the efficacy of novel nonviral gene delivery systems in cells of musculoskeletal origin. Primary cultures of lapine skeletal muscle cells, lapine articular chondrocytes, human cells from fibrous dysplasia and cell lines established from human osteosarcoma (SAOS-2), chondrosarcoma (CS-1), murine skeletal myoblasts (L8) and fibroblasts (NIH 3T3) were transfected with the P. pyralis luc or the E. coli lacZ genes using Nanofectin 1 and 2, Superfect, JetPEI, GeneJammer, Effectene, TransPass D2, FuGENE 6, Lipofectamine 2000, Dreamfect, Metafectene, Escort III, and calcium phosphate. Maximal transfection efficiency in lapine skeletal muscle cells was of 60.8 ± 21.2% using Dreamfect, 38.9 ± 5.0% in articular chondrocytes using Gene Jammer, 5.2 ± 8.0% in human cells from fibrous dysplasia using Lipofectamine 2000, 12.7 ± 16.2% in SAOS-2 cells using FuGENE 6, 29.9 ± 3.5% in CS-1 cells using Lipofectamine 2000, 70.7 ± 8.6% in L8 cells using FuGENE 6, and 48.9 ± 13.0% in NIH 3T3 cells using Metafectene. When the cells were transfected with a human IGF-I gene, significant amounts of the IGF-I protein were secreted. These results indicate that relatively high levels of transfection can be achieved using novel nonviral gene transfer methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Evans, C. H., Ghivizzani, S. C., Herndon, J. H., & Robbins, P. D. (2005). Gene therapy for the treatment of musculoskeletal diseases. Journal of the American Academy of Orthopaedic Surgeons, 13, 230–242.

    PubMed  Google Scholar 

  2. Luo, D., & Saltzman, W. M. (2000). Synthetic DNA delivery systems. Nature Biotechnology, 18, 33–37.

    Article  PubMed  CAS  Google Scholar 

  3. Madry, H., & Trippel, B. (2000). Efficient lipid-mediated gene transfer to articular chondrocytes. Gene Therapy, 7, 286–291.

    Article  PubMed  CAS  Google Scholar 

  4. Pampinella, F., Lechardeur, D., Zanetti, E., MacLachlan, I., Benharouga, M., Lukacs, G. L., & Vitiello, L. (2002). Analysis of differential lipofection efficiency in primary and established myoblasts. Molecular Therapy, 5, 161–169.

    Article  PubMed  CAS  Google Scholar 

  5. Hudde, T., Rayner, S. A., Comer, R. M., Weber, M., Isaacs, J. D., Waldmann, H., Larkin, D. F., & Gearge, A. J. (1999). Activated polyamidoamine dendrimers, a non-viral vector for gene transfer to the corneal endothelium. Gene Therapy, 6, 939–943.

    Article  PubMed  CAS  Google Scholar 

  6. Chemin, I., Moradpour, D., Wieland, S., Offensperger, W. B., Walter, E., Behr, J. P., & Blum, H. E. (1998). Liver-directed gene transfer: A linear polyethlenimine derivative mediates highly efficient DNA delivery to primary hepatocytes in vitro and in vivo. Journal of Viral Hepatitis, 5, 369–375.

    Article  PubMed  CAS  Google Scholar 

  7. Templeton, N. S., & Lasic, D. D. (1999). New directions in liposome gene delivery. Molecular Biotechnology, 11, 175–180.

    Article  PubMed  CAS  Google Scholar 

  8. Ravi Kumar, M., Hellermann, G., Lockey, R. F., & Mohapatra, S. S. (2004). Nanoparticle-mediated gene delivery: State of the art. Expert Opinion on Biological Therapy, 4, 1213–1224.

    Article  PubMed  CAS  Google Scholar 

  9. Madry, H., Kaul, G., Cucchiarini, M., Stein, U., Zurakowski, D., Remberger, K., Menger, M. D., Kohn, D., & Trippel, S. B. (2005). Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Therapy, 12, 1171–1179.

    Article  PubMed  CAS  Google Scholar 

  10. Graham, F. L., & van der Erb, A. J. (1973). A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology, 52, 456–467.

    Article  PubMed  CAS  Google Scholar 

  11. Albert, N., & Tremblay, J. P. (1992). Evaluation of various gene transfection methods into human myoblast clones. Transplantation Proceedings, 24, 2784–2786.

    PubMed  CAS  Google Scholar 

  12. Endesfelder, S., Bucher, S., Kliche, A., Rezska, R., & Speer, A. (2003). Transfection of normal primary human skeletal myoblasts with p21 and p57 antisense oligonucleotides to improve their proliferation: A first step towards an alternative molecular therapy approach of Duchenne muscular dystrophy. Journal of Molecular Medicine, 81, 355–362.

    PubMed  CAS  Google Scholar 

  13. Dodds, E., Dunckley, M. G., Naujoks, K., Michaelis U., & Dickson, G. (1998). Lipofection of cultured mouse muscle cells: A direct comparison of Lipofectamine and DOSPER. Gene Therapy, 5, 542–551.

    Article  PubMed  CAS  Google Scholar 

  14. Trivedi, R. A., & Dickson, G. (1995). Liposome-mediated gene transfer into normal and dystrophin-deficient mouse myoblasts. Journal of Neurochemistry, 64, 2230–2238.

    Article  PubMed  CAS  Google Scholar 

  15. el Oakley, R. M., Brand, N. J., Burton, P. B., Cullen, M. C., Adams, G. B., Poznansky, M. C., Barton, P. J., & Yacoub, M. H. (1998). Efficiency of a high-titer retroviral vector for gene transfer into skeletal myoblasts. Journal of Thoracic and Cardiovascular Surgery, 115, 1–8.

    Article  PubMed  CAS  Google Scholar 

  16. Nabel, E. G., Yang, Z. Y., Plautz, G., Forough, R., Zhan, X., Haudenschild, C. C., Maciag, T., & Nabel, G. J. (1993). Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo. Nature, 362, 844–846.

    Article  PubMed  CAS  Google Scholar 

  17. Marcellus, R. C., Teodoro, J. G., Charbonneau, R., Shore, G. C., & Branton, P. E. (1996). Expression of p53 in Saos-2 osteosarcoma cells induces apoptosis which can be inhibited by Bcl-2 or the adenovirus E1B-55 kDa protein. Cell Growth and Differentiation, 7, 1643–1650.

    PubMed  CAS  Google Scholar 

  18. Marit, G., Cao, Y., Froussard, P., Ripoche, J., Dupouy, M., Elandaloussie, A., Lacombe, F., Mahon, F. X., Keller, H., Pla, M., Reiffers, J., & Theze, J. (2000). Increased liposome-mediated gene transfer into haematopoietic cells grown in adhesion to stromal or fibroblast cell line monolayers. European Journal of Haematology, 64, 22–31.

    Article  PubMed  CAS  Google Scholar 

  19. Weiskirchen, R., Kneifel, J., Weiskirchen, S., van de Leur, E., Kunz, D., & Gressner, A.M. (2000) Comparative evaluation of gene delivery devices in primary cultures of rat hepatic stellate cells and rat myofibroblasts. BMC Cell Biol,1, 4.

  20. Akita, H., Ito, R., Khalil, I. A., Futaki, S., & Harashima, H. (2004). Quantitative three-dimensional analysis of the intracellular trafficking of plasmid DNA transfected by a nonviral gene delivery system using confocal laser scanning microscopy. Molecular Therapy, 9, 443–451.

    Article  PubMed  CAS  Google Scholar 

  21. Hellgren, I., Drvota, V., Pieper, R., Enoksson, S., Blomberg, P., Islam, K. B., & Sylvén, C. (2000). Highly efficient cell-mediated gene transfer using non-viral vectors and FuGene6: In vitro and in vivo studies. Cellular and Molecular Life Sciences, 57, 1326–1333.

    Article  PubMed  CAS  Google Scholar 

  22. Schakman, O., Gilson, H., de Coninck, V., Lause, P., Verniers, J., Havaux, X., Ketelslegers, J. M., & Thissen, J. P. (2005). Insulin-like growth factor-I gene transfer by electroporation prevents skeletal muscle atrophy in glucocorticoid-treated rats. Endocrinology, 146, 1789–1797.

    Article  PubMed  CAS  Google Scholar 

  23. Jeschke, M. G., Herndon, D. N., Baer, W., Barrow, R. E., & Jauch, K. W. (2001). Possibilities of non-viral gene transfer to improve cutaneous wound healing. Current Gene Therapy, 1, 267–278.

    Article  PubMed  CAS  Google Scholar 

  24. Gelse, K., von der Mark, K., Aigner, T., Park, J., & Schneider, H. (2003). Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells. Arthritis and Rheumatism, 48, 430–441.

    Article  PubMed  CAS  Google Scholar 

  25. Madry, H., Zurakowski, D., & Trippel, S. B. (2001). Overexpression of human insulin-like growth factor-I promotes new tissue formation in an ex vivo model of articular chondrocyte transplantation. Gene Therapy, 8, 1443–1449.

    Article  PubMed  CAS  Google Scholar 

  26. Romagnolo, D., Akers, R. M., Wong, E. A., Boyle, P. L., McFadden, T. B., & Turner, J. D. (1992). Overexpression of ovine insulin-like growth factor-I stimulates autonomous autocrine or paracrine growth in bovine mammary-derived epithelial cells. Molecular Endocrinology, 6, 1774–1780.

    Article  PubMed  CAS  Google Scholar 

  27. Eming, S. A., Snow, R. G., Yarmush, M. L., & Morgan, J. R. (1996). Targeted expression of insulin-like growth factor to human keratinocytes: Modification of the autocrine control of keratinocyte proliferation. Journal of Investigative Dermatology, 107, 113–120.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank L. Weissbach and F. Hornicek for providing the CS-1 cells, V. Flockerzi for the NIH 3T3 cells and Y. Mehraein for providing the SAOS-2 cells. H. Madry and M. Cucchiarini have been supported by grants from the Deutsche Forschungsgemeinschaft (DFG MA 2363/1-3 and DFG CU 55/1-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Madry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orth, P., Weimer, A., Kaul, G. et al. Analysis of Novel Nonviral Gene Transfer Systems for Gene Delivery to Cells of the Musculoskeletal System. Mol Biotechnol 38, 137–144 (2008). https://doi.org/10.1007/s12033-007-0071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-0071-8

Keywords

Navigation