Skip to main content
Log in

Characterization of a Novel NADPH-Dependent Oxidoreductase from Gluconobacter oxydans

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A novel protein from Gluconobacter oxydans DSM2003 which shows 60–70% similarity with members of aldo–keto reductase (AKR) superfamily was overexpressed in Escherichia coli BL21 (DE3) and purified by one step affinity chromatography with a Ni-NTA agarose column. The recombinant protein (named GOX0644) consists of 279 amino acids with an apparent molecular mass of 32 kDa in the soluble fraction, and the gene sequence encoding the protein GOX0644 is 100% identical to the ORF of gox0644 in G. oxydans 621H (DSM2343). For a detailed analysis of its enzymatic activity, the substrate specificity of the recombinant protein GOX0644 was determined. With NADPH as a cofactor, GOX0644 exhibited better activity to aromatic aldehydes, especially o-chlorobenzaldehyde, compared to aliphatic aldehydes. It showed almost no activity toward glyceraldehyde, xylose, glucose, and ketones. The protein was unable to oxidize primary- or secondary alcohols. Based on these results, GOX0644 was defined as a novel NADPH-dependent aldehyde reductase. Kinetic parameters of the protein and the dependence of its activity on temperature and pH were also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Deppenmeier, U., Hoffmeister, M., & Prust, C. (2002). Biochemistry and biotechnological applications of Gluconobacter strains. Applied Microbiology and Biotechnology, 60, 233–242.

    Article  CAS  Google Scholar 

  2. Yang, X. P., Wei, L. J., Lin, J. P., Yin, B., & Wei, D. Z. (2008). A membrane-bound PQQ-dependent dehydrogenase in Gluconobacter oxydans M5 1s the primary source enzyme responsible for the oxidation of 1-(2-hydroxyethyl) amino-1-deoxy-d-sorbitol. Applied and Environmental Microbiology, 74, 5250–5253.

    Article  CAS  Google Scholar 

  3. Xu, X., Chen, X., Jin, M., Wu, X., & Wang, X. (2009). Advance in dihydroxyacetone production by microbial fermentation. Sheng Wu Gong Cheng Xue Bao, 25, 903–908.

    CAS  Google Scholar 

  4. Hölscher, T., Schleyer, U., Merfort, M., Bringer-Meyer, S., Görisch, H., & Sahm, H. (2009). Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans. Journal of Molecular Microbiology and Biotechnology, 16, 6–13.

    Article  Google Scholar 

  5. Islami, M., Shabani, A., Saifi-Abolhassan, M., Sepehr, S. H., Soudi, M. R., & Mossavi-Nejad, S. Z. (2008). Purification and characterization of alcohol dehydrogenase from Gluconobacter suboxydans. Pakistan Journal of Biological Sciences, 11, 208–213.

    Article  CAS  Google Scholar 

  6. Prust, C., Hoffmeister, M., Liesegang, H., Wiezer, A., Fricke, W. F., Ehrenreih, A., et al. (2005). Complete genome sequence of the acetic bacterium Gluconobacter oxydans. Nature Biotechnology, 23, 195–200.

    Article  CAS  Google Scholar 

  7. Deppenmeier, U., & Ehrenreich, A. (2009). Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. Journal of Molecular Microbiology and Biotechnology, 16, 69–80.

    Article  CAS  Google Scholar 

  8. Richter, N., Neumann, M., Liese, A., Wohlgemuth, R., Eggert, T., & Hummel, W. (2009). Characterisation of a recombinant NADP-dependent glycerol dehydrogenase from Gluconobacter oxydans and its application in the production of l-glyceraldehyde. Chembiochem: A European Journal of Chemical Biology, 10, 1888–1896.

    Article  CAS  Google Scholar 

  9. Wei, G. D., Yang, X. P., Gan, T. L., Zhou, W. Y., Lin, J. P., & Wei, D. Z. (2009). High cell density fermentation of Gluconobacter oxydans DSM2003 for glycolic acid production. Journal of Industrial Microbiology & Biotechnology, 36, 1029–1034.

    Article  CAS  Google Scholar 

  10. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Natrue (London), 227, 680–685.

    Article  CAS  Google Scholar 

  11. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  12. Ye, Q., et al. (2009). A new member of the short-chain dehydrogenases/reductases superfamily: Purification, characterization and substrate specificity of a recombinant carbonyl reductase from Pichia stipitis. Bioresource Technology, 100(23), 6022–6027. doi:10.1016/j.biortech.2009.06.014.

    Article  CAS  Google Scholar 

  13. Dixon, M., & Webb, E. C. (1979). Enzymes (3rd ed.). London: Longman.

    Google Scholar 

  14. Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., & Ishii, K. (2001). Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Research, 8, 11–22.

    Article  CAS  Google Scholar 

  15. Sakai, A., Katayama, K., Katsuragi, T., & Tani, Y. (2001). Glycolaldehyde-forming route in Bacillus subtilis in relation to vitamin B6 biosynthesis. Journal of Bioscience and Bioengineering, 91, 147–152.

    Article  CAS  Google Scholar 

  16. Willey, D. L., Caswell, D. A., Lowe, C. R., & Bruce, N. C. (1993). Nucleotide sequence and over-expression of morphine dehydrogenase, a plasmid-encoded gene from Pseudomonas putida M10. Biochemical Journal, 290(PT 2), 539–544.

    CAS  Google Scholar 

  17. Schweiger, P., & Deppenmeier, U. (2009). Analysis of aldehyde reductases from Gluconobacter oxydans 621H. Applied Microbiology and Biotechnology, 85(4), 1025–1031. doi:10.1007/s00253-009-2154-x.

    Article  Google Scholar 

  18. Kita, K., Matsuzaki, K., Hashimoto, T., Yanase, H., Kato, N., Chung, M. C. M., et al. (1996). Cloning of the aldehyde reductase gene from a red yeast, Sporobolomyces salmonicolor, and characterization of the gene and its product. Applied and Environmental Microbiology, 62, 2303–2310.

    CAS  Google Scholar 

  19. Petrash, J. M. (2004). All in the family: Aldose reductase and closely related aldo-keto reductases. Cellular and Molecular Life Sciences (CMLS), 61, 737–749.

    Article  CAS  Google Scholar 

  20. Li, T., & Rosazza, J. P. (2000). The carboxylic acid reduction pathway in Nocardia: Purification and characterization of the aldehyde reductase. Journal of Industrial Microbiology & Biotechnology, 25, 328–332.

    Article  CAS  Google Scholar 

  21. Colrat, S., Latche, A., Huis, M., Pech, J. C., Bouzayen, M., Fallot, J., et al. (1999). Purification and characterization of a NADPH-dependent aldehyde reductase from mung bean that detoxifies eutypine, a Toxin from Eutypa lata1. Plant Physiology, 119, 621–626.

    Article  CAS  Google Scholar 

  22. Habrych, M., Rodriguez, S., & Stewart, J. D. (2002). Purification and identification of an Escherichia coli β-keto ester reductase as 2,5-diketo-d-gluconate reductase YqhE. Biotechnology Progress, 18, 257–261.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was financially supported by The National Key Basic Research Development Program of China (NO. 2009CB724703) and National Natural Science Foundation of China (Grant No. 20976053/B060804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinping Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Lin, J., Ma, Y. et al. Characterization of a Novel NADPH-Dependent Oxidoreductase from Gluconobacter oxydans . Mol Biotechnol 46, 176–181 (2010). https://doi.org/10.1007/s12033-010-9283-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9283-4

Keywords

Navigation