Skip to main content
Log in

Expression of Cry1Ac in Transgenic Tobacco Plants Under the Control of a Wound-Inducible Promoter (AoPR1) Isolated from Asparagus officinalis to Control Heliothis virescens and Manduca sexta

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Expression of cry1Ac gene from Bacillus thuringiensis (Bt) was evaluated under the control of a wound-inducible AoPR1 promoter from Asparagus officinalis in transgenic tobacco plants. The leaves of transgenic plants were mechanically wounded to evaluate the activity of the AoPR1 promoter in driving the expression of Cry1Ac protein at the wound site. Our results indicate that mechanical wounding of transgenic plants was effective in inducing the expression of Cry1Ac protein. As a result of this induction, the accumulated levels of Cry1Ac protein increased during 6–72 h post-wounding period. The leaves of transgenic tobacco plants were evaluated for resistance against Heliothis virescens and Manduca sexta in insect bioassays in two different ways. The detached tobacco leaves were either fed directly to the insect larvae or they were first mechanically wounded followed by a 72 h post-wounding feeding period. Complete protection of mechanically wounded leaves of transgenic plants was observed within 24 h of the bioassay. The leaves of transgenic plants fed directly (without pre-wounding) to the larvae achieved the same level of protection between 24 and 72 h of the bioassay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Estela, A., Escriche, B., & Ferre, J. (2004). Interaction of Bacillus thuringiensis toxins with larval midgut binding sites of Helicoverpa armigera (Lepidoptera: Noctuidae). Applied and Environmental Microbiology, 70, 1378–1384. doi:10.1128/AEM.70.3.1378-1384.2004.

    Article  CAS  Google Scholar 

  2. Speese, J., III, Kuhar, T. P., Bratsch, A. D., Nault, B. A., Barlow, V. M., Cordero, R. J., et al. (2005). Efficacy and economics of fresh-market Bt transgenic sweet corn in Virginia. Crop Protection (Guildford, Surrey), 24, 57–64. doi:10.1016/j.cropro.2004.06.008.

    Article  Google Scholar 

  3. Andow, D. A., & Ives, A. R. (2002). Monitoring and adaptive resistance management. Ecological Applications, 12, 1378–1390. doi:10.1890/1051-0761(2002)012[1378:MAARM]2.0.CO;2.

    Article  Google Scholar 

  4. Breitler, J. C., Vassal, J. M., Catala, M. D. M., Meynard, D., Marfa, V., Mele, E., et al. (2004). Bt rice harbouring cry genes controlled by a constitutive or wound-inducible promoter: Protection and transgene expression under Mediterranean field conditions. Plant Biotechnology Journal, 2, 417–430. doi:10.1111/j.1467-7652.2004.00086.x.

    Article  CAS  Google Scholar 

  5. Bates, S. L., Zhao, J. Z., Roush, R. T., & Shelton, A. M. (2005). Insect resistance management in GM crops: past, present and future. Nature Biotechnology, 23, 57–62. doi:10.1038/nbt1056.

    Article  CAS  Google Scholar 

  6. Kim, S., Kim, C., Li, W., Kim, T., Li, Y., Zaidi, M. A., et al. (2008). Inheritance and field performance of transgenic Korean Bt rice lines resistant to rice yellow stem borer. Euphytica, 164, 829–839. doi:10.1007/s10681-008-9739-9.

    Article  Google Scholar 

  7. Paul, E., Harikrishna, K., Fioroni, O., & Draper, J. (1989). Dedifferentiation of Asparagus officinalis L. mesophyll cells during initiation of cell cultures. Plant Science, 65, 111–117. doi:10.1016/0168-9452(89)90213-6.

    Article  Google Scholar 

  8. Harikrishna, K., Paul, E., Darby, R., & Draper, J. (1991). Wound response in mechanically isolated asparagus mesophyll cells: A model monocotyledon system. Journal of Experimental Botany, 42, 791–799. doi:10.1093/jxb/42.6.791.

    Article  CAS  Google Scholar 

  9. Warner, S. A., Scott, R., & Draper, J. (1992). Characterisation of a wound-induced transcript from the monocot asparagus that shares similarity with a class of intracellular pathogenesis-related (PR) proteins. Plant Molecular Biology, 19, 555–561. doi:10.1007/BF00026782.

    Article  CAS  Google Scholar 

  10. Walter, M. H., Liu, J.-W., Grand, C., Lamb, C. J., & Hess, D. (1990). Bean pathogenesis-related (PR) proteins deduced from elicitor-induced transcripts are members of a ubiquitous new class of conserved PR proteins including pollen allergens. Molecular and General Genetics, 222, 353–360. doi:10.1007/BF00633840.

    Article  CAS  Google Scholar 

  11. Warner, S. A., Scott, R., & Draper, J. (1993). Isolation of an asparagus intracellular PR gene (AoPR1) wound-responsive promoter by the inverse polymerase chain reaction and its characterization in transgenic tobacco. The Plant Journal, 3, 191–201. doi:10.1046/j.1365-313X.1993.t01-11-00999.x.

    Article  CAS  Google Scholar 

  12. Mur, L. A., Sturgess, F. J., Farrell, G. G., & Draper, J. (2004). The AoPR10 promoter and certain endogenous PR10 genes respond to oxidative signals in Arabidopsis. Molecular Plant Pathology, 5, 435–451. doi:10.1111/j.1364-3703.2004.00244.x.

    Article  CAS  Google Scholar 

  13. Liang, X., Dron, M., Cramer, J. S., Dixon, R. A., & Lamb, C. J. (1989). Developmental and environmental regulation of a phenylalanine ammonia-lyase-β-glucuronidase gene fusion in transgenic tobacco plants. Proceedings of the National Academy of Sciences of the United States of America, 86, 9284–9288. doi:10.1073/pnas.86.23.9284.

    Article  CAS  Google Scholar 

  14. Doerner, P. W., Stermer, B., Schmid, J., Dixon, R. A., & Lamb, C. J. (1990). Plant defense gene promoter-reporter gene fusions in transgenic plants: Tools for the identification of novel inducers. Bio/technology, 8, 845–848. doi:10.1038/nbt0990-845.

    Article  CAS  Google Scholar 

  15. Stermer, B. A., Schmid, J., Lamb, C. J., & Dixon, R. A. (1990). Infection and stress activation of bean chalcone synthase promoters in transgenic tobacco. Molecular Plant-Microbe Interactions, 3, 381–388.

    CAS  Google Scholar 

  16. Firek, S., Ozcan, S., Warner, S. A., & Draper, J. (1993). A wound-induced promoter driving npt-II expression limited to dedifferentiated cells at wound sites is sufficient to allow selection of transgenic shoots. Plant Molecular Biology, 22, 129–142. doi:10.1007/BF00039001.

    Article  CAS  Google Scholar 

  17. Ozcan, S., Firek, S., & Draper, J. (1993). Selectable marker genes engineered for specific expression in target cells for plant transformation. Bio/Technology, 11, 218–221. doi:10.1038/nbt0293-218.

    Article  CAS  Google Scholar 

  18. Datla, R. S. S., Hammerlindl, J. K., Panchuk, B., Pelcher, L. E., & Keller, W. (1992). Modified binary plant transformation vectors with the wild-type gene encoding NPTII. Gene, 122, 383–384. doi:10.1016/0378-1119(92)90232-E.

    Article  CAS  Google Scholar 

  19. Cheng, X., Sardana, R., Kaplan, H., & Altosaar, I. (1998). Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proceedings of the National Academy of Sciences of the United States of America, 95, 2767–2772. doi:10.1073/pnas.95.6.2767.

    Article  CAS  Google Scholar 

  20. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  21. Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. G., & Fraley, R. T. (1985). A simple and general method for transferring genes into plants. Science, 227, 1229–1231. doi:10.1126/science.227.4691.1229.

    Article  CAS  Google Scholar 

  22. Albani, D., Sardana, R., Robert, L. S., Altosaar, I., Arnison, P. G., & Fabijanski, S. F. (1992). A Brassica napus gene family which shows sequence similarity to ascorbate oxidase is specifically expressed in developing pollen. Molecular characterization and analysis of promoter activity in transgenic tobacco plants. The Plant Journal, 2, 331–342.

    CAS  Google Scholar 

  23. Zaidi, M. A., Mohammadi, M., Postel, S., Masson, L., & Altosaar, I. (2005). The Bt gene cry2Aa2 driven by a tissue specific ST-LS1 promoter from potato effectively controls Heliothis virescens. Transgenic Research, 14, 289–298. doi:10.1007/s11248-004-7714-3.

    Article  CAS  Google Scholar 

  24. Ge, A. Z., Pfister, R. M., & Dean, D. H. (1990). Hyperexpression of a Bacillus thuringiensis δ-endotoxin encoding gene in Escherichia coli: Properties of the product. Gene, 93, 49–54. doi:10.1016/0378-1119(90)90134-D.

    Article  CAS  Google Scholar 

  25. Tabashnik, B. E. (1994). Evolution of resistance to Bacillus thuringiensis. Annual Review of Entomology, 39, 47–79. doi:10.1146/annurev.en.39.010194.000403.

    Article  Google Scholar 

  26. Shelton, A. M., Robertson, J. L., Tang, J. D., Perez, C., Eigenbrode, S. D., Preisler, H. K., et al. (1993). Resistance of diamondback moth (lepidoptera, plutellidae) to Bacillus-thuringiensis subspecies in the field. Journal of Economic Entomology, 86, 697–705.

    Google Scholar 

  27. Perez, C. J., & Shelton, A. M. (1996). Field applications, leaf-dip, and diet incorporated diagnostic assays used against Bacillus thuringiensis-susceptible and resistant diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 89, 1364–1371.

    CAS  Google Scholar 

  28. Tang, J. D., Collins, H. L., Metz, T. D., Earle, E. D., Zhao, J. Z., Roush, R. T., et al. (2001). Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies. Journal of Economic Entomology, 94, 240–247.

    Article  CAS  Google Scholar 

  29. Gatz, C. (1997). Chemical control of gene expression. Annual Review of Plant Physiology, 48, 89–108. doi:10.1146/annurev.arplant.48.1.89.

    Article  CAS  Google Scholar 

  30. Mallet, J., & Porter, P. (1992). Preventing insect adaptation to insect-resistant crops: Are seed mixtures or refugia the best strategy? Proceedings of the Royal Society of London. Series B: Biological Sciences, 250, 165–169. doi:10.1098/rspb.1992.0145.

    Article  Google Scholar 

  31. Cao, J., Shelton, A. M., & Earle, E. D. (2001). Gene expression and insect resistance in transgenic broccoli containing a Bacillus thuringiensis cry1Ab gene with the chemically inducible PR-1a promoter. Molecular Breeding, 8, 207–216. doi:10.1023/A:1013734923291.

    Article  CAS  Google Scholar 

  32. Jin, R.-G., Liu, Y. B., Tabashnik, B. E., & Borthakur, D. (2000). Development of transgenic cabbage (Brassica oleracea var Capitata) for insect resistance by Agrobacterium tumefaciens-mediated transformation. In Vitro Cellular & Developmental Biology. Plant, 36, 231–237. doi:10.1007/s11627-000-0043-1.

    Article  CAS  Google Scholar 

  33. Cao, J., Bates, S. L., Zhao, J. Z., Shelton, A. M., & Earle, E. D. (2006). Bacillus thuringiensis protein production, signal transduction, and insect control in chemically inducible PR-1a/cry1Ab broccoli plants. Plant Cell Reports, 25, 554–560. doi:10.1007/s00299-005-0091-4.

    Article  CAS  Google Scholar 

  34. Frutos, R., Rang, C., & Royer, M. (1999). Managing insect resistance to plants producing Bacillus thuringiensis toxins. Critical Reviews in Biotechnology, 19, 227–276. doi:10.1080/0738-859991229251.

    Article  CAS  Google Scholar 

  35. High, S. M., Cohen, M. B., Shu, Q. Y., & Altosaar, I. (2004). Achieving successful deployment of Bt rice. Trends in Plant Science, 9, 286–292.

    Article  CAS  Google Scholar 

  36. Perlak, F. J., Fuchs, R. L., Dean, D. A., McPherson, S. L., & Fischhoff, D. A. (1991). Modification of the coding sequence enhances plant expression of insect control protein genes. Proceedings of the National Academy of Sciences of the United States of America, 88, 3324–3328. doi:10.1073/pnas.88.8.3324.

    Article  CAS  Google Scholar 

  37. Roush, R. T. (1997). Bt-transgenic crops: Just another pretty insecticide or a chance for a new start in resistance management? Pesticide Science, 51, 328–334. doi:10.1002/(SICI)1096-9063(199711)51:3<328::AID-PS650>3.0.CO;2-B.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. John Draper (University of Wales, Aberystwyth, UK) for critical reading of the manuscript and Leicester University (UK) for permission to use the AoPR1 promoter (Patent No. 6031151) in this research. This study was funded by The Rockefeller Foundation and NSERC grants to IA. SGO gratefully acknowledges a postdoctoral fellowship from The Scientific and Technological Research Council of Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Illimar Altosaar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulbitti-Onarici, S., Zaidi, M.A., Taga, I. et al. Expression of Cry1Ac in Transgenic Tobacco Plants Under the Control of a Wound-Inducible Promoter (AoPR1) Isolated from Asparagus officinalis to Control Heliothis virescens and Manduca sexta . Mol Biotechnol 42, 341–349 (2009). https://doi.org/10.1007/s12033-009-9168-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9168-6

Keywords

Navigation