Skip to main content

Advertisement

Log in

The functions of N6-methyladenosine (m6A) RNA modifications in colorectal cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancers (CRC), which includes colon cancer (CC) and rectal cancer (RC), are some of the most common malignant tumors that are prone to distant metastasis. Its high incidence rate and high mortality rate have attracted much attention. In recent years, epigenetics has attracted increasing attention and has been the focus of many research studies. N6-methyladenosine(m6A) RNA modifications can modify eukaryotic mRNA to impact metabolism. The changes in the m6A regulatory genes are related to the occurrence and development of CRC and play an important role in the pathogenesis of CRC. The effect of m6A RNA modification is regulated by its related regulatory factors ("writer", "eraser", "reader"). In this review, we comprehensively analyzed the effect of m6A methylation on CRC and the relationship between the expression of related regulatory factors and the development and occurrence of CRC. Then, we summarized the roles of m6A and its regulatory factors in CRC and its potential clinical value, which provides a basis for further research on the mechanism of m6A methylation in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zhang C, Zhang L, Xu T, Xue R, Yu L, Zhu Y, Wu Y, Zhang Q, Li D, Shen S, Tan D, Bai F, Zhang H. Mapping the spreading routes of lymphatic metastases in human colorectal cancer. Nat Commun. 2020;11:1993. https://doi.org/10.1038/s41467-020-15886-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gong Y, Guo Y, Hai Y, Yang H, Liu Y, Yang S, Zhang Z, Ma M, Liu L, Li Z, He Z. Nodal promotes the self-renewal of human colon cancer stem cells via an autocrine manner through Smad2/3 signaling pathway. Biomed Res Int. 2014;2014: 364134. https://doi.org/10.1155/2014/364134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fang Z, Hu Y, Hu J, Huang Y, Zheng S, Guo C. The crucial roles of N(6)-methyladenosine (m(6)A) modification in the carcinogenesis and progression of colorectal cancer. Cell Biosci. 2021;11:72. https://doi.org/10.1186/s13578-021-00583-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu X, Huang J, Ocansey DKW, Xia Y, Zhao Z, Xu Z, Yan Y, Zhang X, Mao F. The emerging clinical application of m6A RNA modification in inflammatory bowel disease and its associated colorectal cancer. J Inflamm Res. 2021;14:3289–306. https://doi.org/10.2147/JIR.S320449.

    Article  PubMed  PubMed Central  Google Scholar 

  5. O’Keefe SJ. Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol. 2016;13:691–706. https://doi.org/10.1038/nrgastro.2016.165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grivennikov SI. Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol. 2013;35:229–44. https://doi.org/10.1007/s00281-012-0352-6.

    Article  CAS  PubMed  Google Scholar 

  7. Yu H, Hemminki K. Genetic epidemiology of colorectal cancer and associated cancers. Mutagenesis. 2020;35:207–19. https://doi.org/10.1093/mutage/gez022.

    Article  CAS  PubMed  Google Scholar 

  8. Thanikachalam K, Khan G. Colorectal cancer and nutrition. Nutrients. 2019. https://doi.org/10.3390/nu11010164.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vernia F, Longo S, Stefanelli G, Viscido A, Latella G. Dietary factors modulating colorectal carcinogenesis. Nutrients. 2021. https://doi.org/10.3390/nu13010143.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother. 2019;112:108613. https://doi.org/10.1016/j.biopha.2019.108613.

    Article  CAS  PubMed  Google Scholar 

  11. He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18:176. https://doi.org/10.1186/s12943-019-1109-9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19:88. https://doi.org/10.1186/s12943-020-01204-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lan Q, Liu PY, Haase J, Bell JL, Huttelmaier S, Liu T. The critical role of RNA m(6)A methylation in cancer. Cancer Res. 2019;79:1285–92. https://doi.org/10.1158/0008-5472.CAN-18-2965.

    Article  CAS  PubMed  Google Scholar 

  14. Liu ZX, Li LM, Sun HL, Liu SM. Link between m6A modification and cancers. Front Bioeng Biotechnol. 2018;6:89. https://doi.org/10.3389/fbioe.2018.00089.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shen H, Lan Y, Zhao Y, Shi Y, Jin J, Xie W. The emerging roles of N6-methyladenosine RNA methylation in human cancers. Biomark Res. 2020;8:24. https://doi.org/10.1186/s40364-020-00203-6.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu X, Xiao M, Zhang L, Li L, Zhu G, Shen E, Lv M, Lu X, Sun Z. The m6A methyltransferase METTL14 inhibits the proliferation, migration, and invasion of gastric cancer by regulating the PI3K/AKT/mTOR signaling pathway. J Clin Lab Anal. 2021;35: e23655. https://doi.org/10.1002/jcla.23655.

    Article  CAS  PubMed  Google Scholar 

  17. Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ, Ma XD, Han K, Chen JW, Judde JG, Deas O, Wang F, Ma NF, Guan X, Yun JP, Wang FW, Xu RH, Dan X. N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10:4695. https://doi.org/10.1038/s41467-019-12651-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen Y, Wang S, Cho WC, Zhou X, Zhang Z. Prognostic implication of the m(6)A RNA methylation regulators in rectal cancer. Front Genet. 2021;12:604229. https://doi.org/10.3389/fgene.2021.604229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Z, Wang Q, Zhang M, Zhang W, Zhao L, Yang C, Wang B, Jiang K, Ye Y, Shen Z, Wang S. Comprehensive analysis of the transcriptome-wide m6A methylome in colorectal cancer by MeRIP sequencing. Epigenetics. 2021;16:425–35. https://doi.org/10.1080/15592294.2020.1805684.

    Article  PubMed  Google Scholar 

  20. Li W, Gao Y, Jin X, Wang H, Lan T, Wei M, Yan W, Wang G, Li Z, Zhao Z, Jiang X. Comprehensive analysis of N6-methylandenosine regulators and m6A-related RNAs as prognosis factors in colorectal cancer. Mol Ther Nucleic Acids. 2022;27:598–610. https://doi.org/10.1016/j.omtn.2021.12.007.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang J, Cheng X, Wang J, Huang Y, Yuan J, Guo D. Gene signature and prognostic merit of M6a regulators in colorectal cancer. Exp Biol Med (Maywood). 2020;245:1344–54. https://doi.org/10.1177/1535370220936145.

    Article  CAS  Google Scholar 

  22. Zhang Q, Cai Y, Kurbatov V, Khan SA, Lu L, Zhang Y, Johnson CH. Gene alterations of N6-methyladenosine (m(6)A) regulators in colorectal cancer: a TCGA database study. Biomed Res Int. 2020;2020:8826456. https://doi.org/10.1155/2020/8826456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peng W, Li J, Chen R, Gu Q, Yang P, Qian W, Ji D, Wang Q, Zhang Z, Tang J, Sun Y. Upregulated METTL3 promotes metastasis of colorectal cancer via miR-1246/SPRED2/MAPK signaling pathway. J Exp Clin Cancer Res. 2019;38:393. https://doi.org/10.1186/s13046-019-1408-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen H, Gao S, Liu W, Wong CC, Wu J, Wu J, Liu D, Gou H, Kang W, Zhai J, Li C, Su H, Wang S, Soares F, Han J, He HH, Yu J. RNA N(6)-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m(6)A-GLUT1-mTORC1 axis and is a therapeutic target. Gastroenterology. 2021;160:1284–300. https://doi.org/10.1053/j.gastro.2020.11.013.

    Article  CAS  PubMed  Google Scholar 

  25. Xiang S, Liang X, Yin S, Liu J, Xiang Z. N6-methyladenosine methyltransferase METTL3 promotes colorectal cancer cell proliferation through enhancing MYC expression. Am J Transl Res. 2020;12:1789–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li T, Hu PS, Zuo Z, Lin JF, Li X, Wu QN, Chen ZH, Zeng ZL, Wang F, Zheng J, Chen D, Li B, Kang TB, Xie D, Lin D, Ju HQ, Xu RH. METTL3 facilitates tumor progression via an m(6)A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 2019;18:112. https://doi.org/10.1186/s12943-019-1038-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou D, Tang W, Xu Y, Xu Y, Xu B, Fu S, Wang Y, Chen F, Chen Y, Han Y, Wang G. METTL3/YTHDF2 m6A axis accelerates colorectal carcinogenesis through epigenetically suppressing YPEL5. Mol Oncol. 2021;15:2172–84. https://doi.org/10.1002/1878-0261.12898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Song P, Feng L, Li J, Dai D, Zhu L, Wang C, Li J, Li L, Zhou Q, Shi R, Wang X, Jin H. beta-catenin represses miR455-3p to stimulate m6A modification of HSF1 mRNA and promote its translation in colorectal cancer. Mol Cancer. 2020;19:129. https://doi.org/10.1186/s12943-020-01244-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu W, Si Y, Xu J, Lin Y, Wang JZ, Cao M, Sun S, Ding Q, Zhu L, Wei JF. Methyltransferase like 3 promotes colorectal cancer proliferation by stabilizing CCNE1 mRNA in an m6A-dependent manner. J Cell Mol Med. 2020;24:3521–33. https://doi.org/10.1111/jcmm.15042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen C, Yuan W, Zhou Q, Shao B, Guo Y, Wang W, Yang S, Guo Y, Zhao L, Dang Q, Yang X, Wang G, Kang Q, Ji Z, Liu J, Sun Z. N6-methyladenosine-induced circ1662 promotes metastasis of colorectal cancer by accelerating YAP1 nuclear localization. Theranostics. 2021;11:4298–315. https://doi.org/10.7150/thno.51342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deng R, Cheng Y, Ye S, Zhang J, Huang R, Li P, Liu H, Deng Q, Wu X, Lan P, Deng Y. m(6)A methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways. Onco Targets Ther. 2019;12:4391–402. https://doi.org/10.2147/OTT.S201052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang X, Zhang S, He C, Xue P, Zhang L, He Z, Zang L, Feng B, Sun J, Zheng M. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer. 2020;19:46. https://doi.org/10.1186/s12943-020-1146-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen X, Xu M, Xu X, Zeng K, Liu X, Pan B, Li C, Sun L, Qin J, Xu T, He B, Pan Y, Sun H, Wang S. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer. 2020;19:106. https://doi.org/10.1186/s12943-020-01220-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen X, Xu M, Xu X, Zeng K, Liu X, Sun L, Pan B, He B, Pan Y, Sun H, Xia X, Wang S. METTL14 suppresses CRC progression via regulating N6-methyladenosine-dependent primary miR-375 processing. Mol Ther. 2020;28:599–612. https://doi.org/10.1016/j.ymthe.2019.11.016.

    Article  CAS  PubMed  Google Scholar 

  35. Wang S, Gan M, Chen C, Zhang Y, Kong J, Zhang H, Lai M. Methyl CpG binding protein 2 promotes colorectal cancer metastasis by regulating N(6) -methyladenosine methylation through methyltransferase-like 14. Cancer Sci. 2021;112:3243–54. https://doi.org/10.1111/cas.15011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang J, Tsoi H, Li X, Wang H, Gao J, Wang K, Go MY, Ng SC, Chan FK, Sung JJ, Yu J. Carbonic anhydrase IV inhibits colon cancer development by inhibiting the Wnt signalling pathway through targeting the WTAP-WT1-TBL1 axis. Gut. 2016;65:1482–93. https://doi.org/10.1136/gutjnl-2014-308614.

    Article  CAS  PubMed  Google Scholar 

  37. Yue C, Chen J, Li Z, Li L, Chen J, Guo Y. microRNA-96 promotes occurrence and progression of colorectal cancer via regulation of the AMPKalpha2-FTO-m6A/MYC axis. J Exp Clin Cancer Res. 2020;39:240. https://doi.org/10.1186/s13046-020-01731-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tang S, Liu Q, Xu M. LINC00857 promotes cell proliferation and migration in colorectal cancer by interacting with YTHDC1 and stabilizing SLC7A5. Oncol Lett. 2021;22:578. https://doi.org/10.3892/ol.2021.12839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou A, Liu J, Che L, Li J. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m(6)A reader YTHDF3. Mol Cancer. 2019;18:143. https://doi.org/10.1186/s12943-019-1079-y.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang Y, Huang W, Yuan Y, Li J, Wu J, Yu J, He Y, Wei Z, Zhang C. Long non-coding RNA H19 promotes colorectal cancer metastasis via binding to hnRNPA2B1. J Exp Clin Cancer Res. 2020;39:141. https://doi.org/10.1186/s13046-020-01619-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu G, Liao J, Wu J, Ding J, Zhang L. The proliferation of colorectal cancer cells is suppressed by silencing of EIF3H. Biosci Biotechnol Biochem. 2018;82:1694–701. https://doi.org/10.1080/09168451.2018.1484271.

    Article  CAS  PubMed  Google Scholar 

  42. Yang C, Zhang Y, Du W, Cheng H, Li C. Eukaryotic translation initiation factor 3 subunit G promotes human colorectal cancer. Am J Transl Res. 2019;11:612–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C, He C. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017;27(3):315–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bai Y, Yang C, Wu R, Huang L, Song S, Li W, Yan P, Lin C, Li D, Zhang Y. YTHDF1 regulates tumorigenicity and cancer stem cell-like activity in human colorectal carcinoma. Front Oncol. 2019;9:332.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen P, Liu XQ, Lin X, Gao LY, Zhang S, Huang X. Targeting YTHDF1 effectively re-sensitizes cisplatin-resistant colon cancer cells by modulating GLS-mediated glutamine metabolism. Mol Ther Oncol. 2021;20:228–39.

    Article  CAS  Google Scholar 

  46. Li H, Zhang N, Jiao X, Wang C, Sun W, He Y, Ren G, Huang S, Li M, Chang Y, Jin Z, Xie QA-O, Zhang X, Huang HA-O, Jin HA-O. Downregulation of microRNA-6125 promotes colorectal cancer growth through YTHDF2-dependent recognition of N6-methyladenosine-modified GSK3β. Clin Transl Med. 2021;11(10):602.

    Article  Google Scholar 

  47. Zhou DA-O, Tang W, Xu Y, Xu Y, Xu B, Fu S, Wang Y, Chen F, Chen Y, Han Y, Wang G. METTL3/YTHDF2 m6A axis accelerates colorectal carcinogenesis through epigenetically suppressing YPEL5. Mol Oncol. 2021;15(8):2172–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qi TF, Tang F, Yin J, Miao W, Wang YA-OX. Parallel-reaction monitoring revealed altered expression of a number of epitranscriptomic reader, writer, and eraser proteins accompanied with colorectal cancer metastasis. Proteomics. 2022. https://doi.org/10.1002/pmic.202200059.

    Article  PubMed  Google Scholar 

  49. Tian J, Ying P, Ke J, Zhu Y, Yang Y, Gong Y, Zou D, Peng X, Yang N, Wang X, Mei S, Zhang Y, Wang C, Zhong R, Chang J, Miao X. ANKLE1 N(6) -Methyladenosine-related variant is associated with colorectal cancer risk by maintaining the genomic stability. Int J Cancer. 2020;146:3281–93. https://doi.org/10.1002/ijc.32677.

    Article  CAS  PubMed  Google Scholar 

  50. Xu J, Chen Q, Tian K, Liang R, Chen T, Gong A, Mathy NW, Yu T, Chen X. m6A methyltransferase METTL3 maintains colon cancer tumorigenicity by suppressing SOCS2 to promote cell proliferation. Oncol Rep. 2020;44:973–86. https://doi.org/10.3892/or.2020.7665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang Y, Kang M, Zhang B, Meng F, Song J, Kaneko H, Shimamoto F, Tang B. m(6)A modification-mediated CBX8 induction regulates stemness and chemosensitivity of colon cancer via upregulation of LGR5. Mol Cancer. 2019;18:185–185. https://doi.org/10.1186/s12943-019-1116-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Uddin MB, Roy KR, Hosain SB, Khiste SK, Hill RA, Jois SD, Zhao Y, Tackett AJ, Liu YY. An N(6)-methyladenosine at the transited codon 273 of p53 pre-mRNA promotes the expression of R273H mutant protein and drug resistance of cancer cells. Biochem Pharmacol. 2019;160:134–45. https://doi.org/10.1016/j.bcp.2018.12.014.

    Article  CAS  PubMed  Google Scholar 

  53. Roy KR, Uddin MB, Roy SC, Hill RA, Marshall J, Li YT, Chamcheu JC, Lu H, Liu YY. Gb3-cSrc complex in glycosphingolipid-enriched microdomains contributes to the expression of p53 mutant protein and cancer drug resistance via beta-catenin-activated RNA methylation. FASEB Bioadv. 2020;2:653–67. https://doi.org/10.1096/fba.2020-00044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang Z, Wang T, Wu D, Min Z, Tan J, Yu B. RNA N6-methyladenosine reader IGF2BP3 regulates cell cycle and angiogenesis in colon cancer. J Exp Clin Cancer Res. 2020;39:203. https://doi.org/10.1186/s13046-020-01714-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shenoy AK, Fisher RC, Butterworth EA, Pi L, Chang LJ, Appelman HD, Chang M, Scott EW, Huang EH. Transition from colitis to cancer: high Wnt activity sustains the tumor-initiating potential of colon cancer stem cell precursors. Cancer Res. 2012;72:5091–100. https://doi.org/10.1158/0008-5472.CAN-12-1806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang L, Venneti S, Nagrath D. Glutaminolysis: a hallmark of cancer metabolism. Annu Rev Biomed Eng. 2017;19:163–94. https://doi.org/10.1146/annurev-bioeng-071516-044546.

    Article  CAS  PubMed  Google Scholar 

  57. Tanabe A, Tanikawa K, Tsunetomi M, Takai K, Ikeda H, Konno J, Torigoe T, Maeda H, Kutomi G, Okita K, Mori M, Sahara H. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1alpha mRNA is translated. Cancer Lett. 2016;376:34–42. https://doi.org/10.1016/j.canlet.2016.02.022.

    Article  CAS  PubMed  Google Scholar 

  58. Guo X, Li K, Jiang W, Hu Y, Xiao W, Huang Y, Feng Y, Pan Q, Wan R. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer. 2020;19:91. https://doi.org/10.1186/s12943-020-01158-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shen C, Sheng Y, Zhu AC, Robinson S, Jiang X, Dong L, Chen H, Su R, Yin Z, Li W, Deng X, Chen Y, Hu YC, Weng H, Huang H, Prince E, Cogle CR, Sun M, Zhang B, Chen CW, Marcucci G, He C, Qian Z, Chen J. RNA demethylase ALKBH5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia. Cell Stem Cell. 2020;27:64–80. https://doi.org/10.1016/j.stem.2020.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang P, Wang Q, Liu A, Zhu J, Feng J. ALKBH5 holds prognostic values and inhibits the metastasis of colon cancer. Pathol Oncol Res. 2020;26:1615–23. https://doi.org/10.1007/s12253-019-00737-7.

    Article  CAS  PubMed  Google Scholar 

  61. Liu T, Li C, Jin L, Li C, Wang L. The prognostic value of m6A RNA methylation regulators in colon adenocarcinoma. Med Sci Monit. 2019;25:9435–45. https://doi.org/10.12659/MSM.920381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang H, Zhao L, Li S, Wang J, Feng C, Li T, Du X. N6-methylandenosine-related lncRNAs in tumor microenvironment are potential prognostic biomarkers in colon cancer. Front Oncol. 2021;11:697949. https://doi.org/10.3389/fonc.2021.697949.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ji L, Chen S, Gu L, Zhang X. Exploration of potential roles of m6A regulators in colorectal cancer prognosis. Front Oncol. 2020;10:768. https://doi.org/10.3389/fonc.2020.00768.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lan H, Liu Y, Liu J, Wang X, Guan Z, Du J, Jin KA-O. Tumor-associated macrophages promote oxaliplatin resistance via METTL3-mediated m(6)A of TRAF5 and necroptosis in colorectal cancer. Mol Pharm. 2021;18(3):1026–37.

    Article  CAS  PubMed  Google Scholar 

  65. Zhao Y, Zhao H, Zhang D, Quan Q, Ge Y, Li LA-O, Guo L. YTHDF3 facilitates eIF2AK2 and eIF3A recruitment on mRNAs to regulate translational processes in oxaliplatin-resistant colorectal cancer. ACS Chem Biol. 2022;17(7):1778–88.

    Article  CAS  PubMed  Google Scholar 

  66. Liu X, Su K, Sun X, Jiang Y, Wang L, Hu C, Zhang C, Lu M, Du X, Xing B. Sec62 promotes stemness and chemoresistance of human colorectal cancer through activating Wnt/β-catenin pathway. J Exp Clin Cancer Res. 2021;40(1):1–17.

    Article  CAS  Google Scholar 

  67. Liu H, Li D, Sun L, Qin H, Fan A, Meng L, Graves-Deal R, Glass SE, Franklin JL, Liu Q, Wang J, Yeatman TJ, Guo H, Zong H, Jin S, Chen Z, Deng T, Fang Y, Li C, Karijolich J, Patton JG, Wang X, Nie Y, Fan D, Coffey RJ, Zhao X, Lu Y. Interaction of lncRNA MIR100HG with hnRNPA2B1 facilitates m(6)A-dependent stabilization of TCF7L2 mRNA and colorectal cancer progression. Mol Cancer. 2022;21(1):1–18.

    Article  CAS  Google Scholar 

  68. Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH, Diaz LA Jr. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 2019;16:361–75. https://doi.org/10.1038/s41575-019-0126-x.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S. A National Cancer Institute Workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248.

    CAS  PubMed  Google Scholar 

  70. Wang L, Hui H, Agrawal K, Kang Y, Li N, Tang R, Yuan J, Rana TM. m(6) A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. EMBO J. 2020;39:e104514. https://doi.org/10.15252/embj.2020104514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet. 2014;15:293–306.

    Article  CAS  PubMed  Google Scholar 

  72. He L, Li H, Wu A, Peng Y, Shu G, Yin GA-O. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18(1):1–15.

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingbing Shang or Liang Wang.

Ethics declarations

Competing interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, H., Liu, L., Chen, J. et al. The functions of N6-methyladenosine (m6A) RNA modifications in colorectal cancer. Med Oncol 39, 235 (2022). https://doi.org/10.1007/s12032-022-01827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01827-4

Keywords

Navigation