Skip to main content
Log in

Possible protective effect of pantoprazole against cisplatin-induced nephrotoxicity in head and neck cancer patients: a randomized controlled trial

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cisplatin is used to treat solid malignancies including head and neck cancer. However, nephrotoxicity limits its use. In this study, we looked for a possible protective effect of pantoprazole against cisplatin-induced nephrotoxicity. We used novel biomarkers for early detection of nephrotoxicity. Sixty chemotherapy naïve head and neck cancer patients completed the study. Following complete history taking and thorough clinical examination, patients were randomly divided into three groups: 20 patients in each. Group I (control group) received cisplatin without pantoprazole, groups II and III received pantoprazole 80 mg and 40 mg, respectively, concurrently with cisplatin. Blood and urine samples were collected at baseline, and 48 h after the first and third cycles of cisplatin administration. Assessment of serum creatinine and soluble FasL (sFasL), as well as urinary neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) was performed. Nephrotoxicity was detected in 6 patients in group I, none in group II and 3 patients in group III. Serum creatinine significantly increased at the end of treatment in group I compared to groups II and III. Group I also had significantly higher urinary KIM-1 and NGAL and serum sFasL compared to groups II and III after the first and third cycles. On the contrary, there was no significant difference between groups II and III. Pantoprazole prevented the increase in acute kidney injury biomarkers in cisplatin-treated patients. Therefore, it is a promising agent in reducing cisplatin-induced nephrotoxicity.

Trial registration Clinical Trials.gov identifier: NCT04217512, registered in January 2020 " retrospectively registered".

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data and materials are transparent, support published claims and comply with field standards.

References

  1. Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol. 2018;31:15–25. https://doi.org/10.1007/s40620-017-0392-z.

    Article  CAS  PubMed  Google Scholar 

  2. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel). 2010;2:2490–518. https://doi.org/10.3390/toxins2112490.

    Article  CAS  Google Scholar 

  3. Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int. 2014. https://doi.org/10.1155/2014/967826.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73:994–1007. https://doi.org/10.1038/sj.ki.5002786.

    Article  CAS  PubMed  Google Scholar 

  5. Peres LAB, da Cunha AD. Acute nephrotoxicity of cisplatin: molecular mechanisms. J Bras Nefrol ʹorgão Of Soc Bras e Latino-Americana Nefrol. 2013;35:332–40. https://doi.org/10.5935/0101-2800.20130052.

    Article  Google Scholar 

  6. Duan ZY, Cai GY, Li JJ, Chen XM. Cisplatin-induced renal toxicity in elderly people. Ther Adv Med Oncol. 2020;12:1–15. https://doi.org/10.1177/1758835920923430.

    Article  Google Scholar 

  7. Tanase DM, Gosav EM, Radu S, Costea CF, Ciocoiu M, Carauleanu A, et al. The predictive role of the biomarker kidney molecule-1 (KIM-1) in acute kidney injury (AKI) cisplatin-induced nephrotoxicity. Int J Mol Sci. 2019;20:5238. https://doi.org/10.3390/ijms20205238.

    Article  CAS  PubMed Central  Google Scholar 

  8. Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, et al. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol. 2010;176:1169–80. https://doi.org/10.2353/ajpath.2010.090610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ciarimboli G, Ludwig T, Lang D, Pavenstädt H, Koepsell H, Piechota HJ, et al. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol. 2005;167:1477–84. https://doi.org/10.1016/S0002-9440(10)61234-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sprowl JA, Lancaster CS, Pabla N, Hermann E, Kosloske AM, Gibson AA, et al. Cisplatin-induced renal injury is independently mediated by OCT2 and p53. Clin Cancer Res. 2014;20:4026–35. https://doi.org/10.1158/1078-0432.CCR-14-0319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther. 2009;86:396–402. https://doi.org/10.1038/clpt.2009.139.

    Article  CAS  PubMed  Google Scholar 

  12. Seijas M, Baccino C, Nin N, Lorente JA. Definition and biomarkers of acute renal damage: new perspectives. Med Intensiva. 2014;38:376–85. https://doi.org/10.1016/j.medine.2013.09.003.

    Article  CAS  PubMed  Google Scholar 

  13. Ghadrdan E, Ebrahimpour S, Sadighi S, Chaibakhsh S, Jahangard-Rafsanjani Z. Evaluation of urinary neutrophil gelatinase-associated lipocalin and urinary kidney injury molecule-1 as biomarkers of renal function in cancer patients treated with cisplatin. J Oncol Pharm Pract. 2020;26(7):1643–9. https://doi.org/10.1177/1078155220901756.

    Article  CAS  PubMed  Google Scholar 

  14. Kubrak T, Podgórski R, Aebisher D, Gala-Błądzińska A. The significance of NGAL and KIM-1 proteins for diagnosis of acute kidney injury (AKI) in clinical practice. Eur J Clin Exp Med 2018;16:28-33. https://doi.org/10.15584/ejcem.2018.1.4.

  15. Ajay M, G R, Gottipati SS, Babu P S. A concise review on extensive use of proton pump inhibitors. Transl Med 2018;08:8–10. https://doi.org/10.4172/2161-1025.1000204.

  16. Strand DS, Kim D, Peura DA. 25 years of proton pump inhibitors: a comprehensive review. Gut Liver. 2017;11:27–37. https://doi.org/10.5009/gnl15502.

    Article  CAS  PubMed  Google Scholar 

  17. Nies AT, Hofmann U, Resch C, Schaeffeler E, Rius M, Schwab M. Proton pump inhibitors inhibit metformin uptake by organic cation transporters (OCTs). PLoS ONE. 2011;6(7): e22163. https://doi.org/10.1371/journal.pone.0022163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cancer Therapy Evaluation Program (CTEP). Common Terminology Criteria for Adverse Events (CTCAE).v.5.0 [5x7]. Cancer Ther Eval Progr 2017:155. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf. Accessed 5 Feb 2021.

  19. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41. https://doi.org/10.1159/000180580.

    Article  CAS  PubMed  Google Scholar 

  20. Snchez-Gonzlez PD, López-Hernández FJ, López-Novoa JM, Morales AI. An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit Rev Toxicol. 2011;41:803–21. https://doi.org/10.3109/10408444.2011.602662.

    Article  CAS  Google Scholar 

  21. Volarevic V, Djokovic B, Jankovic MG, Harrell CR, Fellabaum C, Djonov V, et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J Biomed Sci. 2019;26:1–14. https://doi.org/10.1186/s12929-019-0518-9.

    Article  Google Scholar 

  22. Bunel V, Tournay Y, Baudoux T, De Prez E, Marchand M, Mekinda Z, et al. Early detection of acute cisplatin nephrotoxicity: interest of urinary monitoring of proximal tubular biomarkers. Clin Kidney J. 2017;10:639–47. https://doi.org/10.1093/ckj/sfx007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shahbazi F, Sadighi S, Dashti-Khavidaki S, Shahi F, Mirzania M, Abdollahi A, et al. Effect of silymarin administration on cisplatin nephrotoxicity: report from a pilot, randomized, double-blinded, Placebo-controlled clinical. Trial Phyther Res. 2015;29:1046–53. https://doi.org/10.1002/ptr.5345.

    Article  CAS  Google Scholar 

  24. Launay-Vacher V, Rey JB, Isnard-Bagnis C, Deray G, Daouphars M. Prevention of cisplatin nephrotoxicity: State of the art and recommendations from the european society of clinical pharmacy special interest group on cancer care. Cancer Chemother Pharmacol. 2008;61:903–9. https://doi.org/10.1007/s00280-008-0711-0.

    Article  CAS  PubMed  Google Scholar 

  25. Karasawa T, Steyger PS. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett. 2015;237:219–27. https://doi.org/10.1016/j.toxlet.2015.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schaeffeler E, Hellerbrand C, Nies AT, Winter S, Kruck S, Hofmann U, van der Kuip H, Zanger UM, Koepsell HSM. DNA methylation is associated with downregulation of the organic cation transporter OCT1 (SLC22A1) in human hepatocellular carcinoma. Genome Med. 2011;3:82. https://doi.org/10.1186/gm298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen L, Hong C, Chen EC, Yee SW, Xu L, Almof EU, et al. Genetic and epigenetic regulation of the organic cation transporter 3, SLC22A3. Pharmacogenomics J. 2013;13:110–20. https://doi.org/10.1038/tpj.2011.60.

    Article  CAS  PubMed  Google Scholar 

  28. Ciarimboli G. Membrane transporters as mediators of cisplatin side-effects. Anticancer Res. 2014;550:547–50. https://doi.org/10.6064/2012/473829.

    Article  Google Scholar 

  29. Shariatmaghani SS, Saadat A, Nazar I, Davoudi F, Parvin S, Mehrani H, et al. Urinary neutrophil gelatinase associated lipocalin (NGAL) in predicting Cisplatin-Induced acute kidney injury. Nephrourol Mon. 2019;11: e87523. https://doi.org/10.5812/numonthly.87523.

    Article  Google Scholar 

  30. Tezcan S, Izzettin FV, Sancar M, Yumuk PF, Turhal S. Nephrotoxicity evaluation in outpatients treated with cisplatin-based chemotherapy using a short hydration method. Pharmacol & Pharm. 2013;04:296–302. https://doi.org/10.4236/pp.2013.43043.

    Article  CAS  Google Scholar 

  31. Peres LAB, da Cunha AD, Assumpção RAB, Schäfer A, da Silva AL, Gaspar AD, et al. Evaluation of the cisplatin nephrotoxicity using the urinary neutrophil gelatinase-associated lipocalin (NGAL) in patients with head and neck cancer. J Bras Nefrol. 2014;36:280–8. https://doi.org/10.5935/0101-2800.20140041.

    Article  PubMed  Google Scholar 

  32. George B, Wen X, Mercke N, Gomez M, O’Bryant C, Bowles DW, et al. Profiling of kidney injury biomarkers in patients receiving cisplatin: time-dependent changes in the absence of clinical nephrotoxicity. Clin Pharmacol Ther. 2017;101:510–8. https://doi.org/10.1002/cpt.606.

    Article  CAS  PubMed  Google Scholar 

  33. Maeda A, Ando H, Ura T, Muro K, Aoki M, Saito K, et al. Differences in urinary renal failure biomarkers in cancer patients initially treated with cisplatin. Anticancer Res 2017;37:5235–5239. https://doi.org/10.21873/anticanres.11947.

  34. Shahbazi F, Sadighi S, Dashti-Khavidaki S, Shahi F, Mirzania M. Urine ratio of neutrophil gelatinase-associated lipocalin to creatinine as a marker for early detection of cisplatinassociated nephrotoxicity. Iran J Kidney Dis. 2015;9:305–10.

    Google Scholar 

  35. Lin HYH, Lee SC, Lin SF, Hsiao HH, Liu YC, Yang WC, et al. Urinary neutrophil gelatinase-associated lipocalin levels predict cisplatin-induced acute kidney injury better than albuminuria or urinary cystatin C levels. Kaohsiung J Med Sci. 2013;29:304–11. https://doi.org/10.1016/j.kjms.2012.10.004.

    Article  CAS  PubMed  Google Scholar 

  36. Shinke H, Masuda S, Togashi Y, Ikemi Y, Ozawa A, Sato T, et al. Urinary kidney injury molecule-1 and monocyte chemotactic protein-1 are noninvasive biomarkers of cisplatin-induced nephrotoxicity in lung cancer patients. Cancer Chemother Pharmacol. 2015;76:989–96. https://doi.org/10.1007/s00280-015-2880-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Karademir LD, Dogruel F, Kocyigit I, Yazici C, Unal A, Sipahioglu MH, et al. The efficacy of theophylline in preventing cisplatin-related nephrotoxicity in patients with cancer. Ren Fail. 2016;38:806–14. https://doi.org/10.3109/0886022X.2016.1163154.

    Article  CAS  PubMed  Google Scholar 

  38. Linkermann A, Himmerkus N, Rölver L, Keyser KA, Steen P, Bräsen JH, et al. Renal tubular Fas ligand mediates fratricide in cisplatin-induced acute kidney failure. Kidney Int. 2011;79:169–78. https://doi.org/10.1038/ki.2010.317.

    Article  CAS  PubMed  Google Scholar 

  39. Soni H, Kaminski D, Gangaraju R, Adebiyi A. Cisplatin-induced oxidative stress stimulates renal fas ligand shedding. Ren Fail. 2018;40:314–22. https://doi.org/10.1080/0886022X.2018.1456938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ikemura K, Oshima K, Enokiya T, Okamoto A, Oda H, Mizuno T, et al. Co-administration of proton pump inhibitors ameliorates nephrotoxicity in patients receiving chemotherapy with cisplatin and fluorouracil: a retrospective cohort study. Cancer Chemother Pharmacol. 2017;79:943–9. https://doi.org/10.1007/s00280-017-3296-7.

    Article  CAS  PubMed  Google Scholar 

  41. Ismail RS, El-Awady MS, Hassan MH. Pantoprazole abrogated cisplatin-induced nephrotoxicity in mice via suppression of inflammation, apoptosis, and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol. 2020;393:1161–71. https://doi.org/10.1007/s00210-020-01823-3.

    Article  CAS  PubMed  Google Scholar 

  42. Hiramatsu S ichi, Ikemura K, Fujisawa Y, Iwamoto T, Okuda M. Concomitant lansoprazole ameliorates cisplatin-induced nephrotoxicity by inhibiting renal organic cation transporter 2 in rats. Biopharm Drug Dispos 2020;41:239–247. https://doi.org/10.1002/bdd.2242.

  43. Fox E, Levin K, Zhu Y, Segers B, Balamuth N, Womer R, et al. Pantoprazole, an inhibitor of the organic cation transporter 2, does not ameliorate cisplatin-related ototoxicity or nephrotoxicity in children and adolescents with newly diagnosed osteosarcoma treated with methotrexate, doxorubicin, and cisplatin. Oncologist. 2018;23:762. https://doi.org/10.1634/theoncologist.2018-0037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carron PL, Padilla M, Maurizi BJ. Nephrotic syndrome and acute renal failure during pegylated liposomal doxorubicin treatment. Hemodial Int. 2014;18:846–7. https://doi.org/10.1111/hdi.12196.

    Article  PubMed  Google Scholar 

  45. Mohamed N, Goldstein J, Schiff J, John R. Collapsing glomerulopathy following anthracycline therapy. Am J Kidney Dis. 2013;61:778–81. https://doi.org/10.1053/j.ajkd.2012.08.048.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for physicians of Oncology and Nuclear Medicine department at Menoufia University hospital for their help during patient allocation. We are also grateful for Faculty of Pharmacy, Tanta University for encouraging this research.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Patient allocation, data collection and analysis were performed by EG and SG. The first draft of the manuscript was written by EG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Eman Ghonaim.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The study protocol was approved by the Research Ethics Committee of Tanta University and was carried out in compliance with the Declaration of Helsinki.

Consent to participate

All participants provided an informed consent before being enrolled in this study.

Consent for publication

Not applicable as no personal data is included.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghonaim, E., El-Haggar, S. & Gohar, S. Possible protective effect of pantoprazole against cisplatin-induced nephrotoxicity in head and neck cancer patients: a randomized controlled trial. Med Oncol 38, 108 (2021). https://doi.org/10.1007/s12032-021-01558-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01558-y

Keywords

Navigation