Skip to main content

Advertisement

Log in

Long noncoding RNAs: new insights into non-small cell lung cancer biology, diagnosis and therapy

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Recent advances in tiling array and high throughput analyses revealed that at least 87.3 % of the human genome is actively transcribed, though <3 % of the human genome encodes proteins. This unexpected truth suggests that most of the transcriptome is constituted by noncoding RNA. Among them, high-resolution microarray and massively parallel sequencing analyses identified long noncoding RNAs (lncRNAs) as nonprotein-coding transcripts. lncRNAs are largely polyadenylated and >200 nucleotides in length transcripts, involved in gene expression through epigenetic and transcriptional regulation, splicing, imprinting and subcellular transport. Although lncRNAs functions are largely uncharacterized, accumulating data indicate that they are involved in fundamental biological functions. Conversely, their dysregulation has increasingly been recognized to contribute to the development and progression of several human malignancies, especially lung cancer, which represents the leading cause of cancer-related deaths worldwide. We conducted a comprehensive review of the published literature focusing on lncRNAs function and disruption in nonsmall cell lung cancer biology, also highlighting their value as biomarkers and potential therapeutic targets. lncRNAs are involved in NSCLC pathogenesis, modulating fundamental cellular processes such as proliferation, cell growth, apoptosis, migration, stem cell maintenance and epithelial to mesenchymal transition, also serving as signaling transducers, molecular decoys and scaffolds. Also, lncRNAs represent very promising biomarkers in early-stage NSCLC patients and may become particularly useful in noninvasive screening protocols. lncRNAs may be used as predictive biomarkers for chemotherapy and targeted therapies sensitivity. Furthermore, selectively targeting oncogenic lncRNAs could provide a new therapeutic tool in treating NSCLC patients. lncRNAs disruption plays a pivotal role in NSCLC development and progression. These molecules also serve as diagnostic, prognostic and predictive biomarkers. Characterization of lncRNA genes and their mechanisms of action will enable us to develop a more comprehensive clinical approach, with the final goal to benefit our patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.

    Article  PubMed  Google Scholar 

  2. Travis WD. The 2015 WHO classification of lung tumors. Pathologe. 2014;35(Supplement 2):188.

    Article  PubMed  Google Scholar 

  3. Sharma SV, Bell DW, Settleman J, et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81.

    Article  CAS  PubMed  Google Scholar 

  4. Shaw AT, Yeap BY, Mino-Kenudson M, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009;27(26):4247–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bergethon K, Shaw AT, Ou SH, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30(8):863–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. American Cancer Society. Non-small cell lung cancer survival rates by stage www.cancer.org/cancer/lungcancernonsmallcell/detailedguide/non-small-cell-lung-cancer-survival-rates. Date last updated: 03/04/15.

  7. Ricciuti B, Mecca C, Crinò L, et al. Non-coding RNAs in lung cancer. Oncoscience. 2014;1(11):674–705.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Prasanth KV, Spector DL. Eukaryotic regulatory RNAs: an answer to the ‘genome complexity’ conundrum. Genes Dev. 2007;21(1):11–42.

    Article  CAS  PubMed  Google Scholar 

  10. Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Enfield KS, Pikor LA, Martinez VD, et al. Mechanistic roles of noncoding RNAs in lung cancer biology and their clinical implications. Genet Res Int. 2012;2012:737416.

    PubMed Central  PubMed  Google Scholar 

  12. Bassett AR, Akhtar A, Barlow DP, et al. Considerations when investigating lncRNA function in vivo. Elife. 2014;14(3):e03058.

    Google Scholar 

  13. Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Benetatos L, Vartholomatos G, Hatzimichael E. MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer. 2011;129(4):773–9.

    Article  CAS  PubMed  Google Scholar 

  15. Feng J, Bi C, Clark BS, et al. The Evf2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 2006;20(11):1470–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wang X, Arai S, Song X, et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature. 2008;454(7200):126–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129:1311–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119(7):941–53.

    Article  CAS  PubMed  Google Scholar 

  20. Kino T, Hurt DE, Ichijo T, et al. Noncoding RNA Gas5 is a growth arrest- and starvation- associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3(107):ra8.

    PubMed Central  PubMed  Google Scholar 

  21. Hajjari M, Salavaty A. HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol Med. 2015;12(1):1–9.

    PubMed Central  PubMed  Google Scholar 

  22. Zhang J, Zhang P, Wang L, et al. Long non-coding RNA HOTAIR in carcinogenesis and metastasis. Acta Biochim Biophys Sin. 2014;46(1):1–5.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119(7):941–53.

    Article  CAS  PubMed  Google Scholar 

  24. Li L, Liu B, Wapinski OL, et al. Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep. 2013;5(1):3–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Liu XH, Liu ZL, Sun M, et al. The long non-coding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small cell lung cancer. BMC Cancer. 2013;13:464.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Zhao W, An Y, Liang Y, et al. Role of HOTAIR long noncoding RNA in metastatic progression of lung cancer. Eur Rev Med Pharmacol Sci. 2014;18(13):1930–6.

    CAS  PubMed  Google Scholar 

  27. Zhuang Y, Wang X, Nguyen HT, et al. Induction of long intergenic non-coding RNA HOTAIR in lung cancer cells by type I collagen. J Hematol Oncol. 2013;6:35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Liu Z, Sun M, Lu K, et al. The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocarcinoma cells via downregulation of p21(WAF1/CIP1) expression. PLoS One. 2013;8(10):e77293.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Nakagawa T, Endo H, Yokoyama M, et al. Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated with short disease-free survival in human non-small cell lung cancer. Biochem Biophys Res Commun. 2013;436(2):319–24.

    Article  CAS  PubMed  Google Scholar 

  30. Lin R, Maeda S, Liu C, et al. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene. 2007;26:851–8.

    Article  CAS  PubMed  Google Scholar 

  31. Tripathi V, Shen Z, Chakraborty A, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9(3):e1003368.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Tripathi V, Ellis JD, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39(6):925–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Yang L, Lin C, Liu W, et al. ncRNA- and Pc2 methylation- dependent gene relocation between nuclear structures mediates gene activation programs. Cell. 2011;147(4):773–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Schmidt LH, Spieker T, Koschmieder S, et al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol. 2011;6(12):1984–92.

    Article  PubMed  Google Scholar 

  35. Tano K, Mizuno R, Okada T, et al. MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett. 2010;584(22):4575–80.

    Article  CAS  PubMed  Google Scholar 

  36. Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031–41.

    Article  PubMed  Google Scholar 

  37. Weber DG, Johnen G, Casjens S, et al. Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer. BMC Res Notes. 2013;6:518.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ling H, Spizzo R, Atlasi Y, et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013;23(9):1446–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Redis RS, Sieuwerts AM, Look MP, et al. CCAT2, a novel long non-coding RNA in breast cancer: expression study and clinical correlations. Oncotarget. 2013;4(10):1748–62.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Wang CY, Hua L, Yao KH, et al. Long non-coding RNA CCAT2 is up-regulated in gastric cancer and associated with poor prognosis. Int J Clin Exp Pathol. 2015;8(1):779–85.

    PubMed Central  PubMed  Google Scholar 

  41. Qiu M, Xu Y, Yang X, et al. CCAT2 is a lung adenocarcinoma-specific long non-coding RNA and promotes invasion of non-small cell lung cancer. Tumour Biol. 2014;35(6):5375–80.

    Article  CAS  PubMed  Google Scholar 

  42. Li J, Li P, Zhao W, et al. Expression of long non-coding RNA DLX6-AS1 in lung adenocarcinoma. Cancer Cell Int. 2015;15:48.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Shahryari A, Jazi MS, Samaei NM, et al. Long non-coding RNA SOX2OT: expression signature, splicing patterns, and emerging roles in pluripotency and tumorigenesis. Front Genet. 2015;6:196.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Hou Z, Zhao W, Zhou J, et al. A long noncoding RNA Sox2ot regulates lung cancer cell proliferation and is a prognostic indicator of poor survival. Int J Biochem Cell Biol. 2014;53:380–8.

    Article  CAS  PubMed  Google Scholar 

  45. Park JY, Lee JE, Park JB, et al. Roles of long noncoding RNAs on tumorigenesis and glioma development. Brain Tumor Res Treat. 2014;2(1):1–6.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Kondo M, Suzuki H, Ueda R, et al. Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene. 1995;10(6):1193–8.

    CAS  PubMed  Google Scholar 

  47. Chen B, Yu M, Chang Q, Lu Y, et al. Mdig derepresses H19 large intergenic non-coding RNA (lincRNA) by down-regulating H3K9me3 and heterochromatin. Oncotarget. 2014;4(9):1427–37.

    Article  Google Scholar 

  48. Thai P, Statt S, Chen CH, et al. Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. Am J Respir Cell Mol Biol. 2013;49(2):204–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Zhang L, Zhou XF, Pan GF, et al. Enhanced expression of long non-coding RNA ZXF1 promoted the invasion and metastasis in lung adenocarcinoma. Biomed Pharmacother. 2014;68(4):401–7.

    Article  CAS  PubMed  Google Scholar 

  50. Nie FQ, Sun M, Yang JS, et al. Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol Cancer Ther. 2015;14(1):268–77.

    Article  CAS  PubMed  Google Scholar 

  51. Yang YR, Zang SZ, Zhong CL, et al. Increased expression of the lncRNA PVT1 promotes tumorigenesis in non-small cell lung cancer. Int J Clin Exp Pathol. 2014;7(10):6929–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Khaitan D, Dinger ME, Mazar J, et al. The melanoma-upregulated long noncoding RNA SPRY4- IT1 modulates apoptosis and invasion. Cancer Res. 2011;71(11):3852–62.

    Article  CAS  PubMed  Google Scholar 

  53. Tennis MA, Van Scoyk MM, Freeman SV, et al. Sprouty-4 inhibits transformed cell growth, migration and invasion, and epithelial-mesenchymal transition, and is regulated by Wnt7A through PPARgamma in non-small cell lung cancer. Mol Cancer Res. 2010;8(6):833–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Sun M, Liu XH, Lu KH, et al. EZH2- mediated epigenetic suppression of long noncoding RNA SPRY4- IT1 promotes NSCLC cell proliferation and metastasis by affecting the epithelial-mesenchymal transition. Cell Death Dis. 2014;5:e1298.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Zhou Y, Zhong Y, Wang Y, et al. Activation of p53 by MEG3 non-coding RNA. J Biol Chem. 2007;282(34):24731–42.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang X, Zhou Y, Mehta KR, et al. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab. 2003;88(11):5119–26.

    Article  CAS  PubMed  Google Scholar 

  57. Lu KH, Li W, Liu XH, et al. Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer. 2013;13:461.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Wang PJ, Ren ZQ, Sun PY, et al. Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem. 2012;113(6):1868–74.

    Article  CAS  PubMed  Google Scholar 

  59. Chen J, Wang R, Zhang K, et al. Long non-coding RNAs in non-small cell lung cancer as biomarkers and therapeutic targets. J Cell Mol Med. 2014;18(12):2425–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Flockhart RJ, Webster DE, Qu K, et al. BRAF (V600E) remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res. 2012;22(6):1006–14. doi:10.1101/gr.140061.112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Sun M, Liu XH, Wang KM, et al. Downregulation of BRAF activated non-coding RNA is associated with poor prognosis for non-small cell lung cancer and promotes metastasis by affecting epithelial-mesenchymal transition. Mol Cancer. 2014;13:68.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Soltermann A. Epithelial-mesenchymal transition in non-small cell lung cancer. Pathologe. 2012;33(Suppl 2):311–7.

    Article  PubMed  Google Scholar 

  63. Kang YB, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004;118(3):277–9.

    Article  CAS  PubMed  Google Scholar 

  64. Han L, Kong R, Yin DD, et al. Low expression of long noncoding RNA GAS6-AS1 predicts a poor prognosis in patients with NSCLC. Med Oncol. 2013;30(4):694.

    Article  PubMed  Google Scholar 

  65. Vajkoczy P, Knyazev P, Kunkel A, et al. Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. Proc Natl Acad Sci USA. 2006;103(15):5799–804.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Lee Y, Lee M, Kim S. Gas6 induces cancer cell migration and epithelial-mesenchymal transition through upregulation of MAPK and Slug. Biochem Biophys Res Commun. 2013;434(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  67. Shi X, Sun M, Liu H, et al. A critical role for the long non-coding RNA GAS5 in proliferation and apoptosis in non-small-cell lung cancer. Mol Carcinog. 2015;54(Suppl 1):E1–12.

    Article  CAS  PubMed  Google Scholar 

  68. Smith CM, Steitz JA. Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol. 1998;18(12):6897–909.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Mourtada-Maarabouni M, Hasan AM, Farzaneh F, et al. Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Mol Pharmacol. 2010;78(1):19–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Han L, Zhang EB, Yin DD, et al. Low expression of long noncoding RNA PANDAR predicts a poor prognosis of non-small cell lung cancer and affects cell apoptosis by regulating Bcl-2. Cell Death Dis. 2015;6:e1665.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Ramalingam S, Belani C. Systemic chemotherapy for advanced non-small cell lung cancer: recent advances and future directions. Oncologist. 2008;13(1):5–13.

    Article  CAS  PubMed  Google Scholar 

  72. Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409.

    Article  PubMed  Google Scholar 

  73. Chen G, Wang Z, Wang D, et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 2013;41(Database issue):D983–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Qi P, Du X. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol. 2013;26(2):155–65.

    Article  CAS  PubMed  Google Scholar 

  75. Lee GL, Dobi A, Srivastava S. Prostate cancer: diagnostic performance of the PCA3 urine test. Nat Rev Urol. 2011;8(3):123–4.

    Article  PubMed  Google Scholar 

  76. Wang P, Lu S, Mao H, et al. Identification of biomarkers for the detection of early stage lung adenocarcinoma by microarray profiling of long noncoding RNAs. Lung Cancer. 2015;88(2):147–53.

    Article  PubMed  Google Scholar 

  77. Yu H, Xu Q, Liu F, et al. Identification and validation of long noncoding RNA biomarkers in human non-small-cell lung carcinomas. J Thorac Oncol. 2015;10(4):645–54.

    Article  CAS  PubMed  Google Scholar 

  78. Yao Y, Li J, Wang L. Large intervening non-coding RNA HOTAIR is an indicator of poor prognosis and a therapeutic target in human cancers. Int J Mol Sci. 2014;15(10):18985–99.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Cheng N, Cai W, Ren S, et al. Long non-coding RNA UCA1 induces non-T790M acquired resistance to EGFR-TKIs by activating the AKT/mTOR pathway in EGFR-mutant non-small cell lung cancer. Oncotarget. 2015;6(27):23582–93.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Gutschner T, Hämmerle M, Diederichs S. MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med. 2013;91(7):791–801.

    Article  CAS  PubMed  Google Scholar 

  81. Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013;45(8):1895–910.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biagio Ricciuti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricciuti, B., Mencaroni, C., Paglialunga, L. et al. Long noncoding RNAs: new insights into non-small cell lung cancer biology, diagnosis and therapy. Med Oncol 33, 18 (2016). https://doi.org/10.1007/s12032-016-0731-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0731-2

Keywords

Navigation