Skip to main content

Advertisement

Log in

p73 G4C14-to-A4T14 polymorphisms are positively correlated with triple-negative breast cancer in southwestern China

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

p73 gene shares structural and functional similarities to p53 and plays an important role in modulating cell cycle arrest and apoptosis. A common non-coding polymorphism of p73 G4C14-to-A4T14 (rs2273953 and rs1801173) at exon 2 may affect gene expression, thus, it may lead to functional significance. The correlation of this polymorphism with clinicopathologic variables of patients with breast cancer has not been investigated. In this study, single-nucleotide polymorphisms (SNPs) of p73 G4C14-to-A4T14 were genotyped by Sequenom MassArray-iPLEX GOLD System in 170 patients with breast cancer. Data were analyzed via t test, chi-square test, and logistic regression analysis. There was no significant correlation between p73 G4C14-to-A4T14 polymorphisms and the patient characteristics, such as clinical TNM stage, menopausal status, axillary lymph node metastasis, pathological type, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2). No significant relationship was observed between the p73 G4C14-to-A4T14 polymorphism and p73 protein expression in cancer tissues. The frequency of GC/GC genotype in patients with triple-negative breast cancer (TNBC) was 78.9 %, that of patients with others was 57.6 %, and the difference had statistical significance (χ 2 = 5.74, P = 0.02). p73 G4C14-to-A4T14 polymorphisms were negatively correlated with chemosensitivity for anthracycline-based chemotherapy in breast cancer (P > 0.05). p73 G4C14-to-A4T14 polymorphisms are positively correlated with TNBC, and p73 gene may play a critical role in a novel therapeutic strategy to TNBC. Additional larger studies are required to test these hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kaghad M, Bonnet H, Yang A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997;90:809–19.

    Article  PubMed  CAS  Google Scholar 

  2. Flores ER, Tsai KY, Crowley D, et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature. 2002;416:560–4.

    Article  PubMed  CAS  Google Scholar 

  3. Jost CA, Marin MC, Kaelin WG Jr. p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature. 1997;389:191–4.

    Article  PubMed  CAS  Google Scholar 

  4. Mai M, Yokomizo A, Qian C, et al. Activation of p73 silent allele in lung cancer. Cancer Res. 1998;58:2347–9.

    PubMed  CAS  Google Scholar 

  5. Yokomizo A, Mai M, Tindall DJ, et al. Overexpression of the wild type p73 gene in human bladder cancer. Oncogene. 1999;18:1629–33.

    Article  PubMed  CAS  Google Scholar 

  6. Yang A, Walker N, Bronson R, et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumors. Nature. 2000;404:99–103.

    Article  PubMed  CAS  Google Scholar 

  7. Takahashi H, Ichimiya S, Nimura Y, et al. Mutation, allelotyping, and transcription analyses of the p73 gene in prostatic carcinoma. Cancer Res. 1998;58:2076–7.

    PubMed  CAS  Google Scholar 

  8. Rufini A, Agostini M, Grespi F, et al. p73 in Cancer. Genes Cancer. 2011;2:491–502.

    Article  PubMed  CAS  Google Scholar 

  9. Peters MA, Janer M, Kolb S, et al. Germline mutations in the p73 gene do not predispose to familial prostate-brain cancer. Prostate. 2001;48:292–6.

    Article  PubMed  CAS  Google Scholar 

  10. Li Q, Athan ES, Wei M, et al. TP73 allelic expression in human brain and allele frequencies in Alzheimer’s disease. BMC Med Genet. 2004;5:14–22.

    Article  PubMed  CAS  Google Scholar 

  11. Chen X, Sturgis EM, Etzel CJ, et al. p73 G4C14-to-A4T14 polymorphism and risk of human papillomavirus-associated squamous cell carcinoma of the oropharynx in never smokers and never drinkers. Cancer. 2008;113:3307–14.

    Article  PubMed  CAS  Google Scholar 

  12. De Feo E, Persiani R, La Greca A, et al. A case-control study on the effect of p53 and p73 gene polymorphisms on gastric cancer risk and progression. Mutat Res. 2009;675:60–5.

    Article  PubMed  Google Scholar 

  13. Umar M, Upadhyay R, Khurana R, et al. Role of p53 and p73 genes polymorphisms in susceptibility to esophageal cancer: a case control study in a northern Indian population. Mol Biol Rep. 2012;39:1153–62.

    Article  PubMed  CAS  Google Scholar 

  14. Deng B, Liu F, Wei Y, et al. Association of a p73 exon 2 G4C14-to-A4T14 polymorphism with risk of hepatocellular carcinoma in a Chinese population. Tumour Biol. 2013;34:293–9.

    Article  PubMed  CAS  Google Scholar 

  15. Wang Z, Sturgis EM, Guo W, et al. Association of combined p73 and p53 genetic variants with tumor HPV16-positive oropharyngeal cancer. PLoS ONE. 2012;7:e35522.

    Article  PubMed  CAS  Google Scholar 

  16. Ryan BM, McManus R, Daly JS, et al. A common p73 polymorphism is associated with a reduced incidence of oesophageal carcinoma. Br J Cancer. 2001;85:1499–503.

    Article  PubMed  CAS  Google Scholar 

  17. Hu Z, Miao X, Ma H, et al. Dinucleotide polymorphism of p73 gene is associated with a reduced risk of lung cancer in a Chinese population. Int J Cancer. 2005;114:455–60.

    Article  PubMed  CAS  Google Scholar 

  18. Zhou X, Wu C. Association of p73 polymorphisms with genetic susceptibilities to breast cancer: a case-control study [J]. Med Oncol. 2012;29:3216–21.

    Article  PubMed  CAS  Google Scholar 

  19. Huang XE, Hamajima N, Katsuda N, et al. Association of p53 codon Arg72Pro and p73 G4C14-to-A4T14 at exon 2 genetic polymorphisms with the risk of Japanese breast cancer. Breast Cancer. 2003;10:307–11.

    Article  PubMed  Google Scholar 

  20. Choi JE, Kang HG, Chae MH, et al. No association between p73 G4C14-to-A4T14 polymorphism and the risk of lung cancer in a Korean population. Biochem Genet. 2006;44:543–50.

    Article  PubMed  CAS  Google Scholar 

  21. Hamajima N, Matsuo K, Suzuki T, et al. No associations of p73 G4C14-to-A4T14 at exon 2 and p53 Arg72Pro polymorphisms with the risk of digestive tract cancers in Japanese. Cancer Lett. 2002;181:81–5.

    Article  PubMed  CAS  Google Scholar 

  22. Wang L, Gao R, Yu L. Combined analysis of the association between p73 G4C14-to-A4T14 polymorphisms and cancer risk. Mol Biol Rep. 2012;39:1731–8.

    Article  PubMed  CAS  Google Scholar 

  23. Yu XJ, Fang F, Xie J, et al. Relationship between TP73 polymorphism (G4C14-A4T14) and cancer risk: a meta-analysis based on literatures. Gene. 2011;484:42–6.

    Article  PubMed  CAS  Google Scholar 

  24. Liu F, Liu L, Li B, et al. p73 G4C14-A4T14 polymorphism and cancer risk: a meta-analysis based on 27 case-control studies. Mutagenesis. 2011;26:573–81.

    Article  PubMed  CAS  Google Scholar 

  25. Hu Y, Jiang L, Zheng J, et al. Association between the p73 exon 2 G4C14-to-A4T14 polymorphism and cancer risk: a meta-analysis. DNA Cell Biol. 2012;31:230–7.

    Article  PubMed  CAS  Google Scholar 

  26. Thorleifsson G, Walters GB, Hewitt AW, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet. 2010;42:906–9.

    Article  PubMed  CAS  Google Scholar 

  27. Shi Y, Xiang P, Li L, Shen M. Analysis of 50 SNPs in CYP2D6, CYP2C19, CYP2C9, CYP3A4 and CYP1A2 by MALDI-TOF mass spectrometry in Chinese Han population. Forensic Sci Int. 2011;207:183–7.

    Article  PubMed  CAS  Google Scholar 

  28. Millis MP. Medium-throughput SNP genotyping using mass spectrometry: multiplex SNP genotyping using the iPLEX-Gold assay. Methods Mol Biol. 2011;700:61–76.

    Article  PubMed  CAS  Google Scholar 

  29. Bauer KR, Brown M, Cress RD, et al. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer. 2007;109:1721–8.

    Article  PubMed  Google Scholar 

  30. Wolff A, Hammond M, Schwartz J, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med. 2007;131:18–43.

    PubMed  CAS  Google Scholar 

  31. Wolff A, Hammond M, Schwartz J, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25:118–45.

    Article  PubMed  CAS  Google Scholar 

  32. Lee KE, Hong YS, Kim BG, et al. p73 G4C14 to A4T14 polymorphism is associated with colorectal cancer risk and survival. World J Gastroenterol. 2010;16(35):4448–54.

    Article  PubMed  CAS  Google Scholar 

  33. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  PubMed  CAS  Google Scholar 

  34. Rastogi P, Anderson SJ, Bear HD, et al. Preoperative chemotherapy: updates of national surgical adjuvant breast and bowel project protocols B-18 and B-27. J Clin Oncol. 2008;26:778–85.

    Article  PubMed  Google Scholar 

  35. Haber DA, Fearon ER. The promise of cancer genetics. Lancet. 1998;351:1–8.

    Article  Google Scholar 

  36. Pfeifer D, Arbman G, Sun XF. Polymorphism of the p73 gene in relation to colorectal cancer risk and survival. Carcinogenesis. 2005;26:103–7.

    Article  PubMed  CAS  Google Scholar 

  37. Arfaoui AT, Kriaa LBM, El Hadj OEA, et al. Association of a p73 exon 2 GC/AT polymorphism with colorectal cancer risk and survival in Tunisian patients. Virchows Arch. 2010;457:359–68.

    Article  PubMed  CAS  Google Scholar 

  38. Liu L, Wu C, Wang Y, et al. Combined effect of genetic polymorphisms in P53, P73, and MDM2 on non-small cell lung cancer survival. J Thorac Oncol. 2011;6:1793–800.

    Article  PubMed  Google Scholar 

  39. Lööf J, Pfeifer D, Adell G, et al. Significance of an exon 2 G4C14-to-A4T14 polymorphism in the p73 gene on survival in rectal cancer patients with or without preoperative radiotherapy. Radiother Oncol. 2009;92:215–20.

    Article  PubMed  Google Scholar 

  40. Li H, Yao L, Ouyang J, et al. Association of p73 G4C14-to-A4T14(GC/AT)polymorphism with breast cancer survival. Carcinogenesis. 2007;28:372–7.

    Article  PubMed  Google Scholar 

  41. Rakha EA, Chan S. Metastatic triple-negative breast cancer. Clin Oncol (R Coll Radiol). 2011;23:587–600.

    Article  CAS  Google Scholar 

  42. Irwin MS, Kondo K, Marin MC, et al. Chemosensitivity linked to p73 function. 2003;3:403–10.

  43. Yuan P, Miao XP, Zhang XM, et al. Association of the responsiveness of advanced non-small cell lung cancer to platinum-based chemotherapy with p53 and p73 polymorphisms. Zhonghua Zhong Liu Za Zhi. 2006;28:107–10.

    PubMed  CAS  Google Scholar 

  44. Liu K, Jiang L, Zhou X. Association of p73 G4C14-to-A4T14 polymorphism at exon 2 with the response of human lung adenocarcinoma cell lines to chemotherapy. Cell Biol Int. 2010;34:185–8.

    Article  PubMed  CAS  Google Scholar 

  45. Tiwary R, Yu W, Sanders BG, et al. α-TEA cooperates with chemotherapeutic agents to induce apoptosis of p53 mutant, triple-negative human breast cancer cells via activating p73 [J]. Breast Cancer Res. 2011;13:R1.

    Article  PubMed  CAS  Google Scholar 

  46. Hastak K, Alli E, Ford JM. Synergistic chemosensitivity of triple-negative breast cancer cell lines to poly(ADP-Ribose) polymerase inhibition, gemcitabine, and cisplatin [J]. Cancer Res. 2010;70:7970–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Hui Zhang for recruiting the subjects, Xuexi Yang and Qingming Jiang for their laboratory assistance, Haiyan Xiang for data collection, and Bin Peng for the statistical analysis.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X. p73 G4C14-to-A4T14 polymorphisms are positively correlated with triple-negative breast cancer in southwestern China. Med Oncol 30, 515 (2013). https://doi.org/10.1007/s12032-013-0515-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-013-0515-x

Keywords

Navigation