Skip to main content

Advertisement

Log in

Combined analysis of the association between p73 G4C14-to-A4T14 polymorphisms and cancer risk

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

P73 is a structural and functional homologue of p53, and plays an important role in regulating cell cycle and apoptosis. A potentially functional polymorphism (designated as p73 G4C14-to-A4T14) has been identified in a region in exon 2 of the p73 gene, which may theoretically form a stem-loop structure and thereby affect p73 expression. Several investigations have reported the correlation between p73 G4C14-to-A4T14 polymorphism and cancer risk. However, the results are inconclusive. To further assess the association between p73 polymorphism and cancer risk, we performed meta-analysis of the data sets obtained from 26 individual studies involving 8,148 cancer patients and 8,150 controls. The association between p73 G4C14-to-A4T14 polymorphism and cancer risk was determined by crude odd ratios (OR) with 95% CI (confidential interval). AT-allele carriers were found to have a significantly increased risk of cervical cancer (AT/GC vs. GC/GC, OR = 1.63, 95% CI = 1.14–2.33; AT/AT + AT/GC vs. GC/GC, OR = 1.49, 95% CI = 1.05–2.10), colorectal cancer (AT/AT vs. AT/GC + GC/GC, OR = 1.98, 95% CI = 1.25–3.12), head and neck cancer (AT/AT + AT/GC vs. GC/GC, OR = 1.44, 95% CI = 1.06–1.96) and other cancers (AT/AT vs. GC/GC, OR = 1.78, 95% CI = 1.24–2.57; AT/AT vs. AT/GC + GC/GC, OR = 1.80, 95% CI = 1.26–2.56). In the stratified analysis of ethnicity, a significantly elevated cancer risk was found in Caucasians (AT/AT + AT/GC vs. GC/GC, OR = 1.18, 95% CI = 1.08–1.30; allele AT vs. allele GC, OR = 1.15, 95% CI = 1.06–1.24). No significant association of p73 polymorphism with the cancer risk of smoking was detected by stratified analysis by smoking status. Together, our data suggest that the p73 G4C14-to-A4T14 may be a risk factor of cancer especially in Caucasians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang L, He G, Zhang P, Wang X, Jiang M, Yu L (2011) Interplay between MDM2, MDMX, Pirh2 and COP1: the negative regulators of p53. Mol Biol Rep 38:229–236

    Article  PubMed  CAS  Google Scholar 

  2. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90:809–819

    Article  PubMed  CAS  Google Scholar 

  3. Benard J, Douc-Rasy S, Ahomadegbe JC (2003) TP53 family members and human cancers. Hum Mutat 21:182–191

    Article  PubMed  CAS  Google Scholar 

  4. Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J, Vagner C, Bonnet H, Dikkes P, Sharpe A, McKeon F, Caput D (2000) p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404:99–103

    Article  PubMed  CAS  Google Scholar 

  5. Moll UM, Slade N (2004) p63 and p73: roles in development and tumor formation. Mol Cancer Res 2:371–386

    PubMed  CAS  Google Scholar 

  6. Marabese M, Vikhanskaya F, Broggini M (2007) p73: a chiaroscuro gene in cancer. Eur J Cancer 43:1361–1372

    Article  PubMed  CAS  Google Scholar 

  7. Kovalev S, Marchenko N, Swendeman S, LaQuaglia M, Moll UM (1998) Expression level, allelic origin, and mutation analysis of the p73 gene in neuroblastoma tumors and cell lines. Cell Growth Differ 9:897–903

    PubMed  CAS  Google Scholar 

  8. Mai M, Yokomizo A, Qian C, Yang P, Tindall DJ, Smith DI, Liu W (1998) Activation of p73 silent allele in lung cancer. Cancer Res 58:2347–2349

    PubMed  CAS  Google Scholar 

  9. Zaika AI, Kovalev S, Marchenko ND, Moll UM (1999) Overexpression of the wild type p73 gene in breast cancer tissues and cell lines. Cancer Res 59:3257–3263

    PubMed  CAS  Google Scholar 

  10. Kang MJ, Park BJ, Byun DS, Park JI, Kim HJ, Park JH, Chi SG (2000) Loss of imprinting and elevated expression of wild-type p73 in human gastric adenocarcinoma. Clin Cancer Res 6:1767–1771

    PubMed  CAS  Google Scholar 

  11. Cai YC, Yang GY, Nie Y, Wang LD, Zhao X, Song YL, Seril DN, Liao J, Xing EP, Yang CS (2000) Molecular alterations of p73 in human esophageal squamous cell carcinomas: loss of heterozygosity occurs frequently; loss of imprinting and elevation of p73 expression may be related to defective p53. Carcinogenesis 21:683–689

    Article  PubMed  CAS  Google Scholar 

  12. Yokomizo A, Mai M, Tindall DJ, Cheng L, Bostwick DG, Naito S, Smith DI, Liu W (1999) Overexpression of the wild type p73 gene in human bladder cancer. Oncogene 18:1629–1633

    Article  PubMed  CAS  Google Scholar 

  13. Zwahlen D, Tschan MP, Grob TJ, Peters UR, Fink D, Haenggi W, Altermatt HJ, Cajot JF, Tobler A, Fey MF, Aebi S (2000) Differential expression of p73 splice variants and protein in benign and malignant ovarian tumours. Int J Cancer 88:66–70

    Article  PubMed  CAS  Google Scholar 

  14. Sun XF (2002) p73 overexpression is a prognostic factor in patients with colorectal adenocarcinoma. Clin Cancer Res 8:165–170

    PubMed  CAS  Google Scholar 

  15. Guan M, Peng HX, Yu B, Lu Y (2003) p73 overexpression and angiogenesis in human colorectal carcinoma. Jpn J Clin Oncol 33:215–220

    Article  PubMed  CAS  Google Scholar 

  16. Zaika AI, Slade N, Erster SH, Sansome C, Joseph TW, Pearl M, Chalas E, Moll UM (2002) DeltaNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors. J Exp Med 196:765–780

    Article  PubMed  CAS  Google Scholar 

  17. Concin N, Becker K, Slade N, Erster S, Mueller-Holzner E, Ulmer H, Daxenbichler G, Zeimet A, Zeillinger R, Marth C, Moll UM (2004) Transdominant DeltaTAp73 isoforms are frequently up-regulated in ovarian cancer. Evidence for their role as epigenetic p53 inhibitors in vivo. Cancer Res 64:2449–2460

    Article  PubMed  CAS  Google Scholar 

  18. Peters MA, Janer M, Kolb S, Jarvik GP, Ostrander EA, Stanford JL (2001) Germline mutations in the p73 gene do not predispose to familial prostate-brain cancer. Prostate 48:292–296

    Article  PubMed  CAS  Google Scholar 

  19. Li G, Wang LE, Chamberlain RM, Amos CI, Spitz MR, Wei Q (2004) p73 G4C14-to-A4T14 polymorphism and risk of lung cancer. Cancer Res 64:6863–6866

    Article  PubMed  CAS  Google Scholar 

  20. Niwa Y, Hamajima N, Atsuta Y, Yamamoto K, Tamakoshi A, Saito T, Hirose K, Nakanishi T, Nawa A, Kuzuya K, Tajima K (2004) Genetic polymorphisms of p73 G4C14-to-A4T14 at exon 2 and p53 Arg72Pro and the risk of cervical cancer in Japanese. Cancer Lett 205:55–60

    Article  PubMed  CAS  Google Scholar 

  21. Zheng L, Pan X, Yang A, Zheng X, Wang X, Zhou Q, Li X (2008) Study of p73G4A polymorphism in HPV-associated cervical carcinoma in Uigur woman in Xinjiang. Chin J Mod Med 18:2302–2306

    CAS  Google Scholar 

  22. Hamajima N, Matsuo K, Suzuki T, Nakamura T, Matsuura A, Hatooka S, Shinoda M, Kodera Y, Yamamura Y, Hirai T, Kato T, Tajima K (2002) No associations of p73 G4C14-to-A4T14 at exon 2 and p53 Arg72Pro polymorphisms with the risk of digestive tract cancers in Japanese. Cancer Lett 181:81–85

    Article  PubMed  CAS  Google Scholar 

  23. Pfeifer D, Arbman G, Sun XF (2005) Polymorphism of the p73 gene in relation to colorectal cancer risk and survival. Carcinogenesis 26:103–107

    Article  PubMed  CAS  Google Scholar 

  24. Arfaoui AT, Kriaa LB, El Hadj OE, Ben Hmida MA, Khiari M, Khalfallah T, Gharbi L, Mzabi S, Bouraoui S (2010) Association of a p73 exon 2 GC/AT polymorphism with colorectal cancer risk and survival in Tunisian patients. Virchows Archiv

  25. Ryan BM, McManus R, Daly JS, Carton E, Keeling PW, Reynolds JV, Kelleher D (2001) A common p73 polymorphism is associated with a reduced incidence of oesophageal carcinoma. Br J Cancer 85:1499–1503

    Article  PubMed  CAS  Google Scholar 

  26. Ge H, Wang YM, Cao YY, Chen ZF, Wen DG, Guo W, Wang N, Zhang XF, Li Y, Zhang JH (2007) The p73 polymorphisms are not associated with susceptibility to esophageal squamous cell carcinoma in a high incidence region of China. Dis Esophagus 20:290–296

    Article  PubMed  CAS  Google Scholar 

  27. Ge H, Wang YM, Cao YY, Zhang XF, Li Y, Guo W, Wang N, Zhang JH (2006) Correlation of p73 polymorphisms to genetic susceptibilities to esophageal carcinoma and gastric cardiac carcinoma. Ai Zheng 25:1351–1355

    PubMed  CAS  Google Scholar 

  28. Zhang W, Wang X, Xie X, Guo F, Yang R, Liu Y, Xu S, Yang Y (2008) Association of the p73 gene G4C14-to-A4T14 polymorphism with increased gastric cancer risk in a northwestern Chinese population. Chin J Clin Oncol 5:157–160

    Article  CAS  Google Scholar 

  29. De Feo E, Persiani R, La Greca A, Amore R, Arzani D, Rausei S, D’Ugo D, Magistrelli P, van Duijn CM, Ricciardi G, Boccia S (2009) A case-control study on the effect of p53 and p73 gene polymorphisms on gastric cancer risk and progression. Mutat Res 675:60–65

    PubMed  Google Scholar 

  30. Li G, Sturgis EM, Wang LE, Chamberlain RM, Amos CI, Spitz MR, El-Naggar AK, Hong WK, Wei Q (2004) Association of a p73 exon 2 G4C14-to-A4T14 polymorphism with risk of squamous cell carcinoma of the head and neck. Carcinogenesis 25:1911–1916

    Article  PubMed  CAS  Google Scholar 

  31. Chen X, Sturgis EM, Etzel CJ, Wei Q, Li G (2008) p73 G4C14-to-A4T14 polymorphism and risk of human papillomavirus-associated squamous cell carcinoma of the oropharynx in never smokers and never drinkers. Cancer 113:3307–3314

    Article  PubMed  CAS  Google Scholar 

  32. Galli P, Cadoni G, Volante M, De Feo E, Amore R, Giorgio A, Arzani D, Paludetti G, Ricciardi G, Boccia S (2009) A case-control study on the combined effects of p53 and p73 polymorphisms on head and neck cancer risk in an Italian population. BMC Cancer 9:137

    Article  PubMed  Google Scholar 

  33. Misra C, Majumder M, Bajaj S, Ghosh S, Roy B, Roychoudhury S (2009) Polymorphisms at p53, p73, and MDM2 loci modulate the risk of tobacco associated leukoplakia and oral cancer. Mol Carcinog 48:790–800

    Article  PubMed  CAS  Google Scholar 

  34. Hiraki A, Matsuo K, Hamajima N, Ito H, Hatooka S, Suyama M, Mitsudomi T, Tajima K (2003) Different risk relations with smoking for non-small-cell lung cancer: comparison of TP53 and TP73 genotypes. Asian Pac J Cancer Prev 4:107–112

    PubMed  Google Scholar 

  35. Hu Z, Miao X, Ma H, Tan W, Wang X, Lu D, Wei Q, Lin D, Shen H (2005) Dinucleotide polymorphism of p73 gene is associated with a reduced risk of lung cancer in a Chinese population. Int J Cancer 114:455–460

    Article  PubMed  CAS  Google Scholar 

  36. Choi JE, Kang HG, Chae MH, Kim EJ, Lee WK, Cha SI, Kim CH, Jung TH, Park JY (2006) No association between p73 G4C14-to-A4T14 polymorphism and the risk of lung cancer in a Korean population. Biochem Genet 44:543–550

    Article  PubMed  CAS  Google Scholar 

  37. Han JL, Colditz GA, Hunter DJ (2006) Lack of associations of selected variants in genes involved in cell cycle and apoptosis with skin cancer risk. Cancer Epidemiol Biomarkers Prev 15:592–593

    Article  PubMed  Google Scholar 

  38. Li C, Chen K, Liu Z, Wang LE, Gershenwald JE, Lee JE, Prieto VG, Duvic M, Grimm EA, Wei Q (2008) Polymorphisms of TP53 Arg72Pro, but not p73 G4C14>A4TA4 and p21 Ser31Arg, contribute to risk of cutaneous melanoma. J Invest Dermatol 128:1585–1588

    Article  PubMed  CAS  Google Scholar 

  39. Huang XE, Hamajima N, Katsuda N, Matsuo K, Hirose K, Mizutani M, Iwata H, Miura S, Xiang J, Tokudome S, Tajima K (2003) Association of p53 codon Arg72Pro and p73 G4C14-to-A4T14 at exon 2 genetic polymorphisms with the risk of Japanese breast cancer. Breast Cancer 10:307–311

    Article  PubMed  Google Scholar 

  40. Niwa Y, Hirose K, Matsuo K, Tajima K, Ikoma Y, Nakanishi T, Nawa A, Kuzuya K, Tamakoshi A, Hamajima N (2005) Association of p73 G4C14-to-A4T14 polymorphism at exon 2 and p53 Arg72Pro polymorphism with the risk of endometrial cancer in Japanese subjects. Cancer Lett 219:183–190

    Article  PubMed  CAS  Google Scholar 

  41. Hishida A, Matsuo K, Tajima K, Ogura M, Kagami Y, Taji H, Morishima Y, Emi N, Naoe T, Hamajima N (2004) Polymorphisms of p53 Arg72Pro, p73 G4C14-to-A4T14 at exon 2 and p21 Ser31Arg and the risk of non-Hodgkin’s lymphoma in Japanese. Leuk Lymphoma 45:957–964

    Article  PubMed  CAS  Google Scholar 

  42. Kang S, Wang DJ, Li WS, Wang N, Zhou RM, Sun DL, Duan YN, Li SZ, Li XF, Li Y (2009) Association of p73 and MDM2 polymorphisms with the risk of epithelial ovarian cancer in Chinese women. Int J Gynecol Cancer 19:572–577

    Article  PubMed  Google Scholar 

  43. Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10:101–129

    Article  Google Scholar 

  44. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748

    PubMed  CAS  Google Scholar 

  45. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  PubMed  CAS  Google Scholar 

  46. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. Br Med J 327:557–560

    Article  Google Scholar 

  47. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101

    Article  PubMed  CAS  Google Scholar 

  48. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. Br Med J 315:629–634

    Article  CAS  Google Scholar 

  49. Imyanitov EN (2009) Gene polymorphisms, apoptotic capacity and cancer risk. Hum Genet 125:239–246

    Article  PubMed  Google Scholar 

  50. Zhu Y, Wang J, He Q, Zhang JQ (2011) Association of p53 codon 72 polymorphism with prostate cancer: a meta-analysis. Mol Biol Rep 38:1603–1607

    Article  PubMed  CAS  Google Scholar 

  51. Marin MC, Jost CA, Brooks LA, Irwin MS, O’Nions J, Tidy JA, James N, McGregor JM, Harwood CA, Yulug IG, Vousden KH, Allday MJ, Gusterson B, Ikawa S, Hinds PW, Crook T, Kaelin WG Jr (2000) A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet 25:47–54

    Article  PubMed  CAS  Google Scholar 

  52. Schabath MB, Wu X, Wei Q, Li G, Gu J, Spitz MR (2006) Combined effects of the p53 and p73 polymorphisms on lung cancer risk. Cancer Epidemiol Biomarkers Prev 15:158–161

    Article  PubMed  CAS  Google Scholar 

  53. Chen X, Sturgis EM, El-Naggar AK, Wei Q, Li G (2008) Combined effects of the p53 codon 72 and p73 G4C14-to-A4T14 polymorphisms on the risk of HPV16-associated oral cancer in never-smokers. Carcinogenesis 29:2120–2125

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Mei Jiang for helping to collected articles related to p73 polymorphisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2011_913_MOESM1_ESM.tif

Supplemental figure 1 Forest plot for the association between p73 G4C14-to-A4T14 polymorphism and cancer risk for condominant model (AT/AT vs. GC/GC). (TIFF 1888 kb)

11033_2011_913_MOESM2_ESM.tif

Supplemental figure 2 Forest plot for the association between p73 G4C14-to-A4T14 polymorphism and cancer risk for recessive model (AT/AT vs. AT/GC + GC/GC). (TIFF 1914 kb)

11033_2011_913_MOESM3_ESM.tif

Supplemental figure 3 Begg’s funnel plot for publication bias test. Each point represents a separate study. Logor indicated common logarithm of OR and s.e.logor represented standard error of logor. The horizontal line represents effect size. a Codominant model, AT/AT versus GC/GC. b Recessive model, AT/AT versus AT/GC + GC/GC. (TIFF 145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Gao, R. & Yu, L. Combined analysis of the association between p73 G4C14-to-A4T14 polymorphisms and cancer risk. Mol Biol Rep 39, 1731–1738 (2012). https://doi.org/10.1007/s11033-011-0913-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0913-0

Keywords

Navigation