Skip to main content

Advertisement

Log in

Effects of a cyclooxygenase-1-selective inhibitor in a mouse model of ovarian cancer, administered alone or in combination with ibuprofen, a nonselective cyclooxygenase inhibitor

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to be potent inhibitors of the cyclooxygenases. The present study was designed to investigate the effects of a cyclooxygenase (COX)-1 inhibitor, SC-560, administered alone or in combination with ibuprofen on the growth inhibition of s.c. human ovarian SKOV-3 carcinoma and on angiogenesis. The effects of SC-560 and ibuprofen on tumor growth inhibition have been examined in mouse ovarian cancer models. Angiogenesis of both COX inhibitors was measured by reverse-transcription polymerase chain reaction (RT-PCR) and immunohistochemistry. Prostaglandin E2 (PGE2) levels in tumor tissues of mice were also determined by ELISA. The inhibitory rates in SC-560 group alone and in combination with ibuprofen group were 21.21% and 41.55%, respectively. In combination therapy with SC-560 and ibuprofen, tumor volumes were significantly reduced compared with that of control group (P < 0.05). In treatment groups, both COX inhibitors significantly reduced intratumor PGE2 levels (all P < 0.01). Microvessel density (MVD) in tumor tissues were significantly decreased from 80.90 ± 5.14 in vehicle-treated to 40.70 ± 10.45 and 38.90 ± 8.41 in SC-560 group alone and combination ibuprofen therapy (all P < 0.01). Ibuprofen was similar to the cyclooxygenase-1-selective inhibitor SC-560 in its ability to suppress the values of MVD of tumor tissues. SC-560 administered alone or in combination with ibuprofen inhibited the COX-associated up-regulation of VEGF. These studies demonstrate synergism between two COX inhibitors and that antiangiogenic therapy can be used to inhibit ovarian cancer growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ozols RF. Future directions in the treatment of ovarian cancer. Semin Oncol. 2002;29:32–42. doi:10.1053/sonc.2002.31594.

    Article  PubMed  CAS  Google Scholar 

  2. NIH Consensus Development Panel on Ovarian Cancer. NIH consensus conference. Ovarian cancer. Screening, treatment and follow-up. JAMA. 1995;273:491–7. doi:10.1001/jama.273.6.491.

    Article  Google Scholar 

  3. Dannenberg AJ, Subbaramaiah K. Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell. 2003;4:431–6. doi:10.1016/S1535-6108(03)00310-6.

    Article  PubMed  CAS  Google Scholar 

  4. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38:97–120. doi:10.1146/annurev.pharmtox.38.1.97.

    Article  PubMed  CAS  Google Scholar 

  5. Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB. Arachidonic acid metabolism. Annu Rev Biochem. 1986;55:69–1020. doi:10.1146/annurev.bi.55.070186.000441.

    Article  PubMed  CAS  Google Scholar 

  6. Seibert K, Masferrer J, Zhang Y, Leahy K, Hauser S, Gierse J. Expression and selective inhibition of constitutive and inducible forms of cyclooxygenase. Adv Prostaglandin Thromboxane Leukot Res. 1995;23:125–7.

    PubMed  CAS  Google Scholar 

  7. Smith CJ, et al. Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc Natl Acad Sci USA. 1998;95:13313–8. doi:10.1073/pnas.95.22.13313.

    Article  PubMed  CAS  Google Scholar 

  8. Sandler RS. Epidemiology and risk factors for colorectal cancer. Gastroenterol Clin North Am. 1996;25:717–35. doi:10.1016/S0889-8553(05)70271-5.

    Article  PubMed  CAS  Google Scholar 

  9. Cramer DW, Harlow BL, Titus-Ernstoff L, Bohlke K, Welch WR, Greenberg ER. Over-the-counter analgesics and risk of ovarian cancer. Lancet. 1998;351:104–7. doi:10.1016/S0140-6736(97)08064-1.

    Article  PubMed  CAS  Google Scholar 

  10. Harris RE, Kasbari S, Farrar WB. Prospective study of nonsteroidal anti-inflammatory drugs and breast cancer. Oncol Rep. 1999;6:71–3.

    PubMed  CAS  Google Scholar 

  11. Gupta RA, et al. Cyclooxygenase-1 is overexpressed and promotes angiogenic growth factor production in ovarian cancer. Cancer Res. 2003;63:906–11.

    PubMed  CAS  Google Scholar 

  12. Daikoku T, et al. Cyclooxygenase-1 is overexpressed in multiple genetically engineered mouse models of epithelial ovarian cancer. Cancer Res. 2006;66:2527–31. doi:10.1158/0008-5472.CAN-05-4063.

    Article  PubMed  CAS  Google Scholar 

  13. Daikoku T, et al. Cyclooxygenase-1 is a potential target for prevention and treatment of ovarian epithelial cancer. Cancer Res. 2005;65:3735–44. doi:10.1158/0008-5472.CAN-04-3814.

    Article  PubMed  CAS  Google Scholar 

  14. Reese J, Zhao X, Ma WG, Brown N, Maziasz TJ, Dey SK. Comparative analysis of pharmacologic and/or genetic disruption of cyclooxygenase-1 and cyclooxygenase-2 function in female reproduction in mice. Endocrinology. 2001;142:3198–206. doi:10.1210/en.142.7.3198.

    Article  PubMed  CAS  Google Scholar 

  15. Williams CS, Watson AJM, Sheng H, Helou R, Sha J, DuBois RN. Celecoxib prevents tumor growth in vivo without toxicity to normal gut: lack of correlation between in vitro and in vivo models. Cancer Res. 2000;60:6045–51.

    PubMed  CAS  Google Scholar 

  16. Ovidiu C, et al. Masferrer cyclooxygenase-2 inhibition with celecoxib enhances antitumor efficacy and reduces diarrhea side effect of CPT-11. Cancer Res. 2002;62:5778–84.

    Google Scholar 

  17. Li W, Xu RJ, Jiang LH, Shi JF, Long X, Fan B. Expression of cyclooxygenase-2 and inducible nitric oxide synthase correlates with tumor angiogenesis in endometrial carcinoma. Med Oncol. 2005;22:63–70. doi:10.1385/MO:22:1:063.

    Article  PubMed  Google Scholar 

  18. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst. 1992;84:1875–87. doi:10.1093/jnci/84.24.1875.

    Article  PubMed  CAS  Google Scholar 

  19. Seki A, Kodama J, Miyagi Y, Kamimura S, Yoshinouchi M, Kudo T. Amplification of the mdm-2 gene and p53 abnormalities in uterine sarcomas. Int J Cancer. 1997;73:33–7. doi :10.1002/(SICI)1097-0215(19970926)73:1<33::AID-IJC6>3.0.CO;2-2.

    Article  PubMed  CAS  Google Scholar 

  20. Min Y, et al. Effects of nonselective cyclooxygenase inhibition with low-dose ibuprofen on tumor growth, angiogenesis, metastasis, and survival in a mouse model of colorectal cancer. Clin Cancer Res. 2005;11:1618–28. doi:10.1158/1078-0432.CCR-04-1696.

    Article  Google Scholar 

  21. Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 1998;93:705–16. doi:10.1016/S0092-8674(00)81433-6.

    Article  PubMed  CAS  Google Scholar 

  22. Kirsi N, Ari R, Martin M, Elizabeth S, Christian CH, Timothy HT. Transformation of immortalized ECV endothelial cells by cyclooxygenase-1 overexpression. J Biol Chem. 1997;272:21455–60. doi:10.1074/jbc.272.34.21455.

    Article  Google Scholar 

  23. Kitamura T, Itoh M, Noda T, Matsuura M, Wakabayashi K. Combined effects of cyclooxygenase-1 and cyclooxygenase-2 selective inhibitors on intestinal. Int J Cancer. 2004;109:576–80. doi:10.1002/ijc.20012.

    Article  PubMed  CAS  Google Scholar 

  24. Yokoyama Y, Dhanabal M, Griffioen AW, Sukhatme VP, Ramakrishnan S. Synergy between angiostatin and endostatin: inhibitor of ovarian cancer growth. Cancer Res. 2000;60:2190–6.

    PubMed  CAS  Google Scholar 

  25. Rao CV, Indranie C, Simi B, Manning PT, Connor JR, Reddy BS. Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor. Cancer Res. 2002;62:165–70.

    PubMed  CAS  Google Scholar 

  26. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    PubMed  CAS  Google Scholar 

  27. Feldman Al, Libutti SK. Progress in antiangiogenic gene therapy of cancer. Cancer. 2000;89:1181–94. doi :10.1002/1097-0142(20000915)89:6<1181::AID-CNCR1>3.0.CO;2-T.

    Article  PubMed  CAS  Google Scholar 

  28. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990;82:4–6. doi:10.1093/jnci/82.1.4.

    Article  PubMed  CAS  Google Scholar 

  29. Olson TA, Mohanraj D, Carson LF, Ramakrishnan S. Vascular permeability factor gene expression in normal and neoplastic ovaries. Cancer Res. 1994;54:276–80.

    PubMed  CAS  Google Scholar 

  30. Yoneda J, Kuniyasu H, Crispens MA, Price JE, Bucana CD, Fidler IJ. Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst. 1998;90:447–54. doi:10.1093/jnci/90.6.447.

    Article  PubMed  CAS  Google Scholar 

  31. Hartenbach EM, Olson TA, Goswitz JJ, Mohanraj D, Twiggs LB, Carson LF. Vascular endothelial growth factor expression and survival in human epithelial ovarian carcinomas. Cancer Lett. 1997;121:169–75. doi:10.1016/S0304-3835(97)00350-9.

    Article  PubMed  CAS  Google Scholar 

  32. Paley PJ, et al. Vascular endothelial growth factor expression in early stage 1 ovarian carcinomas. Cancer (Phila). 1997;80:98–106. doi :10.1002/(SICI)1097-0142(19970701)80:1<98::AID-CNCR13>3.0.CO;2-A.

    Article  CAS  Google Scholar 

  33. Olson TA, Mohanraj D, Roy S, Ramakrishnan S. Targeting the tumor vascular: inhibition of tumor growth by a vascular endothelial growth factor-toxin conjugate. Int J Cancer. 1997;73:865–70. doi :10.1002/(SICI)1097-0215(19971210)73:6<865::AID-IJC17>3.0.CO;2-3.

    Article  PubMed  CAS  Google Scholar 

  34. Nagy JA, Ellen SM, Kemp TH, Eleanor JM, Ann MD, Harold FD. Pathogenesis of ascites tumor growth: angiogenesis, vascular remodeling, and stroma formation in the peritoneal lining. Cancer Res. 1995;55:376–85.

    PubMed  CAS  Google Scholar 

  35. Bryant CE, Appleton I, Mitchell JA. Vascular endothelial growth factor upregulates constitutive cyclooxygenase 1 in primary bovine and human endothelial cells. Life Sci. 1998;62:2195–201. doi:10.1016/S0024-3205(98)00197-0.

    Article  PubMed  CAS  Google Scholar 

  36. Maldve RE, Kim Y, Muga SJ, Fischer SM. Prostaglandin E2 regulation of cyclooxygenase expression in keratinocytes is mediated via cyclic nucleotide-linked prostaglandin receptors. J Lipid Res. 2000;41:873–81.

    PubMed  CAS  Google Scholar 

  37. Dubois RN, Abramson SB, Crofford L. Cyclooxygenase in biology and disease. FASEB J. 1998;12:1063–73.

    PubMed  CAS  Google Scholar 

  38. Yano T, Yano Y, Uchida M, Murakami A, Hagiwar K, Otani S, et al. The modulation effect of vitamin E on prostaglandin E2 level and ornithine decarboxylase activity at the promotion phase of lung tumorigenesis in mice. Biochem Pharmacol. 1997;53:1757–9. doi:10.1016/S0006-2952(96)00869-6.

    Article  PubMed  CAS  Google Scholar 

  39. Hanahan D, Folkma J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–64. doi:10.1016/S0092-8674(00)80108-7.

    Article  PubMed  CAS  Google Scholar 

  40. Masferrer JL, Koki A, Seibert K. Cox-2 inhibitors, a new class of antiangiogenic agents. Ann NY Acad Sci. 1999;889:84–6. doi:10.1111/j.1749-6632.1999.tb08726.x.

    Article  PubMed  CAS  Google Scholar 

  41. Masferrer JL, et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 2000;60:1306–11.

    PubMed  CAS  Google Scholar 

  42. Ferrara N. The role of vascular endothelial growth factor in pathological angiogenesis. Breast Cancer Res Treat. 1995;36:127–37. doi:10.1007/BF00666035.

    Article  PubMed  CAS  Google Scholar 

  43. Yamamoto S, et al. Expression of vascular endothelial growth factor (VEGF) in epithelia ovarian neoplasms: correlation with clinicopathology and patient survival and analysis of serum VEGF levels. Br J Cancer. 1997;76:1221–7.

    PubMed  CAS  Google Scholar 

  44. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med. 1991;324:1–8.

    PubMed  CAS  Google Scholar 

  45. Ferrara N. Vascular endothelial growth factor: molecular and biological aspects. Curr Top Microbiol Immunol. 1999;237:1–30.

    PubMed  CAS  Google Scholar 

  46. Wallace JL, McKnight W, Reuter BK, Vergnolle N. NSAID-induced gastric damage in rats: requirement for inhibition of both cyclooxygenase 1 and 2. Gastroenterology. 2000;119:706–14. doi:10.1053/gast.2000.16510.

    Article  PubMed  CAS  Google Scholar 

  47. Kitamura T, et al. Inhibitory effects of mofezolac, a cyclooxygenase-1 selective inhibitor, on intestinal carcinogenesis. Carcinogenesis. 2002;23:1463–6. doi:10.1093/carcin/23.9.1463.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Xu, Rj., Lin, Zy. et al. Effects of a cyclooxygenase-1-selective inhibitor in a mouse model of ovarian cancer, administered alone or in combination with ibuprofen, a nonselective cyclooxygenase inhibitor. Med Oncol 26, 170–177 (2009). https://doi.org/10.1007/s12032-008-9104-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-008-9104-9

Keywords

Navigation