Skip to main content

Advertisement

Log in

Bisphosphonate treatment and radiotherapy in metastatic breast cancer

  • Review
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Patients with advanced breast cancer frequently develop metastasis to bone. Bone metastasis results in intractable pain and high risk of pathologic fractures due to osteolysis. The treatment of breast cancer patients with bone metastases requires a multidisciplinary approach. Radiotherapy is an established treatment for metastatic bone pain. It may be delivered either as a localized low dose treatment for localized bone pain or systemically for more widespread symptoms. Bisphosphonates have been shown to reduce morbidity and bone pain from bone metastases when given to patients with metastatic bone disease. In vivo studies indicate that early bisphosphonates administration in combination with radiotherapy improves remineralization and restabilization of osteolytic bone metastases in animal tumor models. This review focused on a brief discussion about biology of bone metastases, the effects of radiotherapy and bisphosphonate therapy, and possible mechanisms of combination therapy in metastatic breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jemal A, et al. Cancer statistics, 2005. CA Cancer J Clin. 2005;55(1):10–30.

    PubMed  Google Scholar 

  2. Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001;27(3):165–76.

    Article  PubMed  CAS  Google Scholar 

  3. Cicek M, Oursler MJ. Breast cancer bone metastasis and current small therapeutics. Cancer Metastasis Rev. 2006;25(4):635–44.

    Article  PubMed  CAS  Google Scholar 

  4. Hsu H, et al. Tumour necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA. 1999;96(7):3540–45.

    Article  PubMed  CAS  Google Scholar 

  5. Lacey DL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–76.

    Article  PubMed  CAS  Google Scholar 

  6. Simonet WS, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19.

    Article  PubMed  CAS  Google Scholar 

  7. Guise TA, et al. Parathyroid hormone-related protein (PTHrP)(1–139) isoform is efficiently secreted in vitro and enhances breast cancer metastasis to bone in vivo. Bone. 2002;30(5):670–6.

    Article  PubMed  CAS  Google Scholar 

  8. Pederson L, et al. Identification of breast cancer cell line-derived paracrine factors that stimulate osteoclast activity. Cancer Res. 1999;59(22):5849–55.

    PubMed  CAS  Google Scholar 

  9. Mercer RR, Miyasaka C, Mastro AM. Metastatic breast cancer cells suppress osteoblast adhesion and differentiation. Clin Exp Metastasis. 2004;21(5):427–35.

    Article  PubMed  CAS  Google Scholar 

  10. Mastro AM, et al. Breast cancer cells induce osteoblast apoptosis: a possible contributor to bone degradation. J Cell Biochem. 2004;91(2):265–76.

    Article  PubMed  CAS  Google Scholar 

  11. Hoskin PJ. Bisphosphonates and radiation therapy for palliation of metastatic bone disease. Cancer Treat Rev. 2003;29(4):321–7.

    Article  PubMed  CAS  Google Scholar 

  12. Luini A, et al. The evolution of the conservative approach to breast cancer. Breast. 2007;16(2):120–9.

    Article  PubMed  Google Scholar 

  13. Vukmirovic-Popovic S, et al. Morphological, histomorphometric, and microstructural alterations in human bone metastasis from breast carcinoma. Bone. 2002;31(4):529–35.

    Article  PubMed  CAS  Google Scholar 

  14. Krempien R, et al. Combination of early bisphosphonate administration and irradiation leads to improved remineralization and restabilization of osteolytic bone metastases in an animal tumor model. Cancer. 2003;98(6):1318–24.

    Article  PubMed  CAS  Google Scholar 

  15. Pandit-Taskar N, Batraki M, Divgi CR. Radiopharmaceutical therapy for palliation of bone pain from osseous metastases. J Nucl Med. 2004;45(8):1358–65.

    PubMed  CAS  Google Scholar 

  16. Li L, Story M, Legerski RJ. Cellular responses to ionizing radiation damage. Int J Radiat Oncol Biol Phys. 2001;49(4):1157–62.

    Article  PubMed  CAS  Google Scholar 

  17. Hoskin PJ, Ford HT, Harmer CL. Hemibody irradiation (HBI) for metastatic bone pain in two histologically distinct groups of patients. Clin Oncol (R Coll Radiol). 1989;1(2):67–9.

    CAS  Google Scholar 

  18. Hoskin PJ, et al. A prospective randomised trial of 4 Gy or 8 Gy single doses in the treatment of metastatic bone pain. Radiother Oncol. 1992;23(2):74–8.

    Article  PubMed  CAS  Google Scholar 

  19. Arcangeli G, et al. The responsiveness of bone metastases to radiotherapy: the effect of site, histology and radiation dose on pain relief. Radiother Oncol. 1989;14(2):95–101.

    Article  PubMed  CAS  Google Scholar 

  20. Hoskin PJ, et al. Effect of local radiotherapy for bone pain on urinary markers of osteoclast activity. Lancet. 2000;355(9213):1428–9.

    Article  PubMed  CAS  Google Scholar 

  21. Ural AU, Avcu F. Evolving therapeutic role of bisphosphonates in multiple myeloma. Br J Cancer. 2005;93(2):267–8.

    Article  PubMed  CAS  Google Scholar 

  22. Sato M, et al. Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest. 1991;88(6):2095–105.

    Article  PubMed  CAS  Google Scholar 

  23. Bukowski JF, Dascher CC, Das H. Alternative bisphosphonate targets and mechanisms of action. Biochem Biophys Res Commun. 2005;328(3):746–50.

    Article  PubMed  CAS  Google Scholar 

  24. Green JR. Preclinical pharmacology of zoledronic acid. Semin Oncol. 2002;29(6 Suppl 21):3–11.

    Article  PubMed  CAS  Google Scholar 

  25. Ural AU, Avcu F. Bisphosphonates may potentiate radiation effects: a new approach in cancer treatment? Biochem Biophys Res Commun. 2005;336(2):373–4.

    Article  PubMed  CAS  Google Scholar 

  26. Li X, et al. Inhibition of protein geranylgeranylation and RhoA/RhoA kinase pathway induces apoptosis in human endothelial cells. J Biol Chem. 2002;277(18):15309–16.

    Article  PubMed  CAS  Google Scholar 

  27. Carteni G, et al. Efficacy and safety of zoledronic acid in patients with breast cancer metastatic to bone: a multicenter clinical trial. Oncologist. 2006;11(7):841–8.

    Article  PubMed  CAS  Google Scholar 

  28. Vinholes JJ, et al. Relationships between biochemical and symptomatic response in a double-blind randomised trial of pamidronate for metastatic bone disease. Ann Oncol. 1997;8(12):1243–50.

    Article  PubMed  CAS  Google Scholar 

  29. Ural AU, et al. The bisphosphonate zoledronic acid induces cytotoxicity in human myeloma cell lines with enhancing effects of dexamethasone and thalidomide. Int J Hematol. 2003;78(5):443–9.

    PubMed  CAS  Google Scholar 

  30. Dhodapkar MV, et al. Anti-myeloma activity of pamidronate in vivo. Br J Haematol. 1998;103(2):530–2.

    Article  PubMed  CAS  Google Scholar 

  31. Kunzmann V, et al. Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood. 2000;96(2):384–92.

    PubMed  CAS  Google Scholar 

  32. Mundy GR, Yoneda T. Bisphosphonates as anticancer drugs. N Engl J Med. 1998;339(6):398–400.

    Article  PubMed  CAS  Google Scholar 

  33. Avcu F, et al. The bisphosphonate zoledronic acid inhibits the development of plasmacytoma induced in BALB/c mice by intraperitoneal injection of pristane. Eur J Haematol. 2005;74(6):496–500.

    Article  PubMed  CAS  Google Scholar 

  34. Magnetto S, et al. Additive antitumor activities of taxoids in combination with the bisphosphonate ibandronate against invasion and adhesion of human breast carcinoma cells to bone. Int J Cancer. 1999;83(2):263–9.

    Article  PubMed  CAS  Google Scholar 

  35. van der Pluijm G, et al. Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Invest. 1996;98(3):698–705.

    Article  PubMed  Google Scholar 

  36. Ural AU, et al. In vitro synergistic cytoreductive effects of zoledronic acid and radiation on breast cancer cells. Breast Cancer Res. 2006;8(4):R52.

    Article  PubMed  CAS  Google Scholar 

  37. Woodward JK, et al. Combined effects of zoledronic acid and doxorubicin on breast cancer cell invasion in vitro. Anticancer Drugs. 2005;16(8):845–54.

    Article  PubMed  CAS  Google Scholar 

  38. Jagdev SP, et al. The bisphosphonate, zoledronic acid, induces apoptosis of breast cancer cells: evidence for synergy with paclitaxel. Br J Cancer. 2001;84(8):1126–34.

    Article  PubMed  CAS  Google Scholar 

  39. Ural AU, Avcu F. Additive/synergistic anti-tumoral effects of the combination of docetaxel and zoledronic acid on prostate cancer cells: possible mechanisms? Acta Oncol. 2006;45(4):491–2.

    Article  PubMed  CAS  Google Scholar 

  40. Algur E, Macklis RM, Hafeli UO. Synergistic cytotoxic effects of zoledronic acid and radiation in human prostate cancer and myeloma cell lines. Int J Radiat Oncol Biol Phys. 2005;61(2):535–42.

    PubMed  CAS  Google Scholar 

  41. Ural AU, Avcu F. Radiosensitizing effect of zoledronic acid in small cell lung cancer. Lung Cancer 2005;50(2):271–2.

    Article  PubMed  Google Scholar 

  42. Kurdoglu B, et al. Apoptosis as a predictor of paclitaxel-induced radiosensitization in human tumor cell lines. Clin Cancer Res. 1999;5(9):2580–7.

    PubMed  CAS  Google Scholar 

  43. McKenna WG, Muschel RJ. Targeting tumor cells by enhancing radiation sensitivity. Genes Chromosomes Cancer. 2003;38(4):330–8.

    Article  PubMed  CAS  Google Scholar 

  44. Bernhard EJ, et al. The farnesyltransferase inhibitor FTI-277 radiosensitizes H-ras-transformed rat embryo fibroblasts. Cancer Res. 1996;56(8):1727–30.

    PubMed  CAS  Google Scholar 

  45. Journe F, et al. Sequence- and concentration-dependent effects of acute and long-term exposure to the bisphosphonate ibandronate in combination with single and multiple fractions of ionising radiation doses in human breast cancer cell lines. Clin Exp Metastasis. 2006;23(2):135–47.

    Article  PubMed  CAS  Google Scholar 

  46. Hillner BE, et al. American Society of Clinical Oncology 2003 update on the role of bisphosphonates and bone health issues in women with breast cancer. J Clin Oncol 2003.;21(21):4042–57.

    Article  PubMed  CAS  Google Scholar 

  47. Kouloulias V, et al. Radiotherapy in conjunction with intravenous infusion of 180 mg of disodium pamidronate in management of osteolytic metastases from breast cancer: clinical evaluation, biochemical markers, quality of life, and monitoring of recalcification using assessments of gray-level histogram in plain radiographs. Int J Radiat Oncol Biol Phys. 2003;57(1):143–57.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ugur Ural.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ural, A.U., Avcu, F. & Baran, Y. Bisphosphonate treatment and radiotherapy in metastatic breast cancer. Med Oncol 25, 350–355 (2008). https://doi.org/10.1007/s12032-008-9044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-008-9044-4

Keywords

Navigation