Skip to main content

Advertisement

Log in

Breast cancer bone metastasis and current small therapeutics

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Patients with advanced breast cancer frequently develop metastasis to bone. Bone metastasis results in intractable pain and a high risk of fractures due to tumor-driven bone loss (osteolysis), which is caused by increased osteoclast activity. Osteolysis releases bone-bound growth factors including transforming growth factor beta (TGF-β). The widely accepted model of osteolytic bone metastasis in breast cancer is based on the hypothesis that the TGF-β released during osteolytic lesion development stimulates tumor cell parathyroid hormone related protein (PTHrP), causing stromal cells to secrete receptor activator of NFκB ligand (RANKL), thus increasing osteoclast differentiation. Elevated osteoclast numbers results in increased bone resorption, leading to more TGF-β being released from bone. This interaction between tumor cells and the bone microenvironment results in a vicious cycle of bone destruction and tumor growth. Bisphosphonates are commonly prescribed small molecule therapeutics that target tumor-driven osteoclastic activity in osteolytic breast cancers. In addition to bisphosphonate therapies, steroidal and non-steroidal antiestrogen and adjuvant therapies with aromatase inhibitors are additional small molecule therapies that may add to the arsenal for treatment of osteolytic breast cancer. This review focuses on a brief discussion of tumor-driven osteolysis and the effects of small molecule therapies in reducing osteolytic tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin, T. J., & Moseley, J. M. (2000). Mechanisms in the skeletal complications of breast cancer. Endocrine-Related Cancer, 7, 271–284.

    PubMed  CAS  Google Scholar 

  2. Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.

    Google Scholar 

  3. Guise, T. A., & Mundy, G. R. (1998). Cancer and bone. Endocrine Reviews, 19, 18–54.

    PubMed  CAS  Google Scholar 

  4. Pederson, L., Winding, B., Foged, N. T., Spelsberg, T. C., & Oursler, M. J. (1999). Identification of breast cancer cell line-derived paracrine factors that stimulate osteoclast activity. Cancer Research, 59, 5849–5855.

    PubMed  CAS  Google Scholar 

  5. Thomas, R. J., Guise, T. A., Yin, J. J., Elliott, J., Horwood, N. J., Martin, T. J., et al. (1999). Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology, 140, 4451–4458.

    PubMed  CAS  Google Scholar 

  6. Lacroix, M., Siwek, B., Marie, P. J., & Body, J. J. (1998). Production and regulation of interleukin-11 by breast cancer cells. Cancer Letter, 127, 29–35.

    CAS  Google Scholar 

  7. Bendre, M., Gaddy, D., Nicholas, R. W., & Suva, L. J. (2003). Breast cancer metastasis to bone: It is not all about PTHrP. Clinical Orthopaedics and Related Research, S39–S45.

  8. Tumber, A., Morgan, H. M., Meikle, M. C., & Hill, P. A. (2001). Human breast-cancer cells stimulate the fusion, migration and resorptive activity of osteoclasts in bone explants. International Journal of Cancer, 91, 665–672.

    CAS  Google Scholar 

  9. Morgan, H., Tumber, A., & Hill, P. A. (2004). Breast cancer cells induce osteoclast formation by stimulating host IL-11 production and downregulating granulocyte/macrophage colony-stimulating factor. International Journal of Cancer, 109, 653–660.

    CAS  Google Scholar 

  10. Mancino, A. T., Klimberg, V. S., Yamamoto, M., Manolagas, S. C., & Abe, E. (2001). Breast cancer increases osteoclastogenesis by secreting M-CSF and upregulating RANKL in stromal cells. Journal of Surgical Research, 100, 18–24.

    PubMed  CAS  Google Scholar 

  11. Yin, J. J., Selander, K., Chirgwin, J. M., Dallas, M., Grubbs, B. G., Wieser, R., et al. (1999). TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. Journal of Clinical Investigation, 103, 197–206.

    PubMed  CAS  Google Scholar 

  12. Sachdev, D., & Yee, D. (2001). The IGF system and breast cancer. Endocrine-Related Cancer, 8, 197–209.

    PubMed  CAS  Google Scholar 

  13. Hauschka, P. V., Mavrakos, A. E., Iafrati, M. D., Doleman, S. E., & Klagsbrun, M. (1986). Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin–Sepharose. Journal of Biological Chemistry, 261, 12665–12674.

    PubMed  CAS  Google Scholar 

  14. Hauschka, P. V., Chen, T. L., & Mavrakos, A. E. (1988). Polypeptide growth factors in bone matrix. Ciba Foundation Symposium, 136, 207–225.

    PubMed  CAS  Google Scholar 

  15. Massague, J. (1998). TGF-beta signal transduction. Annual Review of Biochemistry, 67, 753–791.

    PubMed  CAS  Google Scholar 

  16. Pluijm, G., Lowik, C., & Papapoulos, S. (2000). Tumour progression and angiogenesis in bone metastasis from breast cancer: New approaches to an old problem. Cancer Treatment Reviews, 26, 11–27.

    PubMed  CAS  Google Scholar 

  17. Dougall, W. C., Glaccum, M., Charrier, K., Rohrbach, K., Brasel, K., De Smedt, T., et al. (1999). RANK is essential for osteoclast and lymph node development. Genes & Development, 13, 2412–2424.

    CAS  Google Scholar 

  18. Tanaka, S., Takahashi, N., Udagawa, N., Tamura, T., Akatsu, T., Stanley, E. R., et al. (1993). Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. Journal of Clinical Investigation, 91, 257–263.

    PubMed  CAS  Google Scholar 

  19. Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T., et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93, 165–176.

    PubMed  CAS  Google Scholar 

  20. Bhatia, P., Sanders, M. M., & Hansen, M. F. (2005). Expression of receptor activator of nuclear factor-kappaB is inversely correlated with metastatic phenotype in breast carcinoma. Clinical Cancer Research, 11, 162–165.

    PubMed  CAS  Google Scholar 

  21. Jones, D. H., Nakashima, T., Sanchez, O. H., Kozieradzki, I., Komarova, S. V., Sarosi, I., et al. (2006). Regulation of cancer cell migration and bone metastasis by RANKL. Nature, 440, 692–696.

    PubMed  CAS  Google Scholar 

  22. Guise, T. A., Yin, J. J., Thomas, R. J., Dallas, M., Cui, Y., & Gillespie, M. T. (2002). Parathyroid hormone-related protein (PTHrP)–(1–139) isoform is efficiently secreted in vitro and enhances breast cancer metastasis to bone in vivo. Bone, 30, 670–676.

    PubMed  CAS  Google Scholar 

  23. Saito, H., Tsunenari, T., Onuma, E., Sato, K., Ogata, E., & Yamada-Okabe, H. (2005). Humanized monoclonal antibody against parathyroid hormone-related protein suppresses osteolytic bone metastasis of human breast cancer cells derived from MDA-MB-231. Anticancer Research, 25, 3817–3823.

    PubMed  CAS  Google Scholar 

  24. Wieser, R., Attisano, L., Wrana, J. L., & Massague, J. (1993). Signaling activity of transforming growth factor beta type II receptors lacking specific domains in the cytoplasmic region. Molecular and Cellular Biology, 13, 7239–7247.

    PubMed  CAS  Google Scholar 

  25. Yang, Y. A., Dukhanina, O., Tang, B., Mamura, M., Letterio, J. J., MacGregor, J., et al. (2002). Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. Journal of Clinical Investigation, 109, 1607–1615.

    PubMed  CAS  Google Scholar 

  26. Bendre, M. S., Montague, D. C., Peery, T., Akel, N. S., Gaddy, D., & Suva, L. J. (2003). Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone, 33, 28–37.

    PubMed  CAS  Google Scholar 

  27. Burtis, W. J., Brady, T. G., Orloff, J. J., Ersbak, J. B., Warrell, R. P., Jr., Olson, B. R., et al. (1990). Immunochemical characterization of circulating parathyroid hormone-related protein in patients with humoral hypercalcemia of cancer. New England Journal of Medicine, 322, 1106–1112.

    Article  PubMed  CAS  Google Scholar 

  28. Powell, G. J., Southby, J., Danks, J. A., Stillwell, R. G., Hayman, J. A., Henderson, M. A., et al. (1991). Localization of parathyroid hormone-related protein in breast cancer metastases: Increased incidence in bone compared with other sites. Cancer Research, 51, 3059–3061.

    PubMed  CAS  Google Scholar 

  29. Henderson, M. A., Danks, J. A., Slavin, J. L., Byrnes, G. B., Choong, P. F., Spillane, J. B., et al. (2006). Parathyroid hormone-related protein localization in breast cancers predict improved prognosis. Cancer Research, 66, 2250–2256.

    PubMed  CAS  Google Scholar 

  30. Fuller, K., Murphy, C., Kirstein, B., Fox, S. W., & Chambers, T. J. (2002). TNFalpha potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology, 143, 1108–1118.

    PubMed  CAS  Google Scholar 

  31. Oursler, M. J. (1994). Osteoclast synthesis and secretion and activation of latent transforming growth factor beta. Journal of Bone and Mineral Research, 9, 443–452.

    PubMed  CAS  Google Scholar 

  32. Pfeilschifter, J., & Mundy, G. R. (1987). Modulation of type beta transforming growth factor activity in bone cultures by osteotropic hormones. Proceedings of the National Academy of Sciences of the United States of America, 84, 2024–2028.

    PubMed  CAS  Google Scholar 

  33. Kozlow, W., & Guise, T. A. (2005). Breast cancer metastasis to bone: Mechanisms of osteolysis and implications for therapy. Journal of Mammary Gland Biology and Neoplasia, 10, 169–180.

    PubMed  Google Scholar 

  34. Guise, T. A., Kozlow, W. M., Heras-Herzig, A., Padalecki, S. S., Yin, J. J., & Chirgwin, J. M. (2005). Molecular mechanisms of breast cancer metastases to bone. Clinical Breast Cancer, 5(Suppl), S46–S53.

    PubMed  CAS  Google Scholar 

  35. Serra, R., & Crowley, M. R. (2003). TGF-beta in mammary gland development and breast cancer. Breast Disease, 18, 61–73.

    PubMed  CAS  Google Scholar 

  36. Hildenbrand, R., Jansen, C., Wolf, G., Bohme, B., Berger, S., von Minckwitz, G., et al. (1998). Transforming growth factorbeta stimulates urokinase expression in tumorassociated macrophages of the breast. Laboratory Investigation, 78, 59–71.

    PubMed  CAS  Google Scholar 

  37. Feng, X. H., & Derynck, R. (2005). Specificity and versatility in tgf-beta signaling through Smads. Annual Review of Cell and Developmental Biology, 21, 659–693.

    PubMed  CAS  Google Scholar 

  38. Frey, R. S., & Mulder, K. M. (1997). TGFbeta regulation of mitogen-activated protein kinases in human breast cancer cells. Cancer Letter, 117, 41–50.

    CAS  Google Scholar 

  39. Kakonen, S. M., Selander, K. S., Chirgwin, J. M., Yin, J. J., Burns, S., Rankin, W. A., et al. (2002).Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. Journal of Biological Chemistry, 277, 24571–24578.

    PubMed  CAS  Google Scholar 

  40. Lindemann, R. K., Ballschmieter, P., Nordheim, A., & Dittmer, J. (2001). Transforming growth factor beta regulates parathyroid hormone-related protein expression in MDA-MB-231 breast cancer cells through a novel Smad/Ets synergism. Journal of Biological Chemistry, 276, 46661–46670.

    PubMed  CAS  Google Scholar 

  41. Deckers, M., van Dinther, M., Buijs, J., Que, I., Lowik, C., van der Pluijm, G., et al. (2006). The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Research, 66, 2202–2209.

    PubMed  CAS  Google Scholar 

  42. Serra, R., & Crowley, M. R. (2005). Mouse models of transforming growth factor beta impact in breast development and cancer. Endocrine-Related Cancer, 12, 749–760.

    PubMed  CAS  Google Scholar 

  43. Mercer, R. R., Miyasaka, C., & Mastro, A. M. (2004). Metastatic breast cancer cells suppress osteoblast adhesion and differentiation. Clinical & Experimental Metastasis, 21, 427–435.

    CAS  Google Scholar 

  44. Mastro, A. M., Gay, C. V., Welch, D. R., Donahue, H. J., Jewell, J., Mercer, R., et al. (2004). Breast cancer cells induce osteoblast apoptosis: A possible contributor to bone degradation. Journal of Cellular Biochemistry, 91, 265–276.

    PubMed  CAS  Google Scholar 

  45. Fleisch, H. (1991). Bisphosphonates. Pharmacology and use in the treatment of tumour-induced hypercalcaemic and metastatic bone disease. Drugs, 42, 919–944.

    PubMed  CAS  Google Scholar 

  46. Brown, J. E., Neville-Webbe, H., & Coleman, R. E. (2004). The role of bisphosphonates in breast and prostate cancers. Endocrine-Related Cancer, 11, 207–224.

    PubMed  CAS  Google Scholar 

  47. van der Pluijm, G., Vloedgraven, H., van Beek, E., van der Wee-Pals, L., Lowik, C., & Papapoulos, S. (1996). Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. Journal of Clinical Investigation, 98, 698–705.

    Article  PubMed  Google Scholar 

  48. Boissier, S., Magnetto, S., Frappart, L., Cuzin, B., Ebetino, F. H., Delmas, P. D., et al. (1997). Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices. Cancer Research, 57, 3890–3894.

    PubMed  CAS  Google Scholar 

  49. Schmidt, A., Rutledge, S. J., Endo, N., Opas, E. E., Tanaka, H., Wesolowski, G., et al. (1996). Protein-tyrosine phosphatase activity regulates osteoclast formation and function: Inhibition by alendronate. Proceedings of the National Academy of Sciences of the United States of America, 93, 3068–3073.

    PubMed  CAS  Google Scholar 

  50. Endo, N., Rutledge, S. J., Opas, E. E., Vogel, R., Rodan, G. A., & Schmidt, A. (1996). Human protein tyrosine phosphatase-sigma: Alternative splicing and inhibition by bisphosphonates. Journal of Bone and Mineral Research, 11, 535–543.

    Article  PubMed  CAS  Google Scholar 

  51. Skorey, K., Ly, H. D., Kelly, J., Hammond, M., Ramachandran, C., Huang, Z., et al. (1997). How does alendronate inhibit protein-tyrosine phosphatases? Journal of Biological Chemistry, 272, 22472–22480.

    PubMed  CAS  Google Scholar 

  52. Bergstrom, J. D., Bostedor, R. G., Masarachia, P. J., Reszka, A. A., & Rodan, G. (2000). Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Archives of Biochemistry and Biophysics, 373, 231–241.

    PubMed  CAS  Google Scholar 

  53. Swanson, K. M., & Hohl, R. J. (2006). Anti-cancer therapy: Targeting the mevalonate pathway. Current Cancer Drug Targets, 6, 15–37.

    PubMed  CAS  Google Scholar 

  54. Jagdev, S. P., Coleman, R. E., Shipman, C. M., Rostami, H. A., & Croucher, P. I. (2001). The bisphosphonate, zoledronic acid, induces apoptosis of breast cancer cells: Evidence for synergy with paclitaxel. British Journal of Cancer, 84, 1126–1134.

    PubMed  CAS  Google Scholar 

  55. Yoneda, T., Michigami, T., Yi, B., Williams, P. J., Niewolna, M., & Hiraga, T. (2000). Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma. Cancer, 88, 2979–2988.

    PubMed  CAS  Google Scholar 

  56. Fromigue, O., Lagneaux, L., & Body, J. J. (2000). Bisphosphonates induce breast cancer cell death in vitro. Journal of Bone and Mineral Research, 15, 2211–2221.

    PubMed  CAS  Google Scholar 

  57. Senaratne, S. G., Pirianov, G., Mansi, J. L., Arnett, T. R., & Colston, K. W. (2000). Bisphosphonates induce apoptosis in human breast cancer cell lines. British Journal of Cancer, 82, 1459–1468.

    PubMed  CAS  Google Scholar 

  58. Neville-Webbe, H. L., Rostami-Hodjegan, A., Evans, C. A., Coleman, R. E., & Holen, I. (2005). Sequence- and schedule-dependent enhancement of zoledronic acid induced apoptosis by doxorubicin in breast and prostate cancer cells. International Journal of Cancer, 113, 364–371.

    CAS  Google Scholar 

  59. Journe, F., Chaboteaux, C., Magne, N., Duvillier, H., Laurent, G., & Body, J. J. (2006). Additive growth inhibitory effects of ibandronate and antiestrogens in estrogen receptor-positive breast cancer cell lines. Breast Cancer Research, 8, R2.

    PubMed  Google Scholar 

  60. Boissier, S., Ferreras, M., Peyruchaud, O., Magnetto, S., Ebetino, F. H., Colombel, M., et al. (2000). Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Research, 60, 2949–2954.

    PubMed  CAS  Google Scholar 

  61. Virtanen, S. S., Vaananen, H. K., Harkonen, P. L., & Lakkakorpi, P. T. (2002). Alendronate inhibits invasion of PC-3 prostate cancer cells by affecting the mevalonate pathway. Cancer Research, 62, 2708–2714.

    PubMed  CAS  Google Scholar 

  62. Ferretti, G., Fabi, A., Carlini, P., Papaldo, P., Cordiali Fei, P., Di Cosimo, S., et al. (2005). Zoledronic-acid-induced circulating level modifications of angiogenic factors, metalloproteinases and proinflammatory cytokines in metastatic breast cancer patients. Oncology, 69, 35–43.

    PubMed  CAS  Google Scholar 

  63. Hortobagyi, G. N., Theriault, R. L., Porter, L., Blayney, D., Lipton, A., Sinoff, C., et al. (1996). Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group. New England Journal of Medicine, 335, 1785–1791.

    PubMed  CAS  Google Scholar 

  64. Hortobagyi, G. N., & Piccart-Gebhart, M. J. (1996). Current management of advanced breast cancer. Seminars in Oncology, 23, 1–5.

    PubMed  CAS  Google Scholar 

  65. Kanis, J. A. (1996). Rationale for the use of bisphosphonates in breast cancer. Acta Oncologica, 35(Suppl 5), 61–67.

    PubMed  Google Scholar 

  66. Theriault, R. L., Lipton, A., Hortobagyi, G. N., Leff, R., Gluck, S., Stewart, J. F., et al. (1999). Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: A randomized, placebo-controlled trial. Protocol 18 Aredia Breast Cancer Study Group. Journal of Clinical Oncology, 17, 846–854.

    PubMed  CAS  Google Scholar 

  67. Hurst, M., & Noble, S. (1999). Clodronate: A review of its use in breast cancer. Drugs and Aging, 15, 143–167.

    PubMed  CAS  Google Scholar 

  68. Diel, I. J., Solomayer, E. F., Costa, S. D., Gollan, C., Goerner, R., Wallwiener, D., et al. (1998). Reduction in new metastases in breast cancer with adjuvant clodronate treatment. New English Journal of Medicine, 339, 357–363.

    CAS  Google Scholar 

  69. Kage, K., Nagahama, T., Sekine, I., Maruyama, M., & Ogata, E. (1997). A remarkable improvement of clinical manifestations in a breast cancer patient with widespread bone metastases after administration of pamidronate. Internal Medicine, 36, 926–930.

    PubMed  CAS  Google Scholar 

  70. Luckman, S. P., Hughes, D. E., Coxon, F. P., Graham, R., Russell, G., & Rogers, M. J. (1998). Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. Journal of Bone and Mineral Research, 13, 581–589.

    PubMed  CAS  Google Scholar 

  71. Delmas, P. D., Balena, R., Confravreux, E., Hardouin, C., Hardy, P., & Bremond, A. (1997). Bisphosphonate risedronate prevents bone loss in women with artificial menopause due to chemotherapy of breast cancer: A double-blind, placebo-controlled study. Journal of Clinical Oncology, 15, 955–962.

    PubMed  CAS  Google Scholar 

  72. Body, J. J., Diel, I. J., Lichinitser, M. R., Kreuser, E. D., Dornoff, W., Gorbunova, V. A., et al. (2003). Intravenous ibandronate reduces the incidence of skeletal complications in patients with breast cancer and bone metastases. Annals of Oncology, 14, 1399–1405.

    PubMed  Google Scholar 

  73. Body, J. J., Diel, I. J., Bell, R., Pecherstorfer, M., Lichinitser, M. R., Lazarev, A. F., et al. (2004). Oral ibandronate improves bone pain and preserves quality of life in patients with skeletal metastases due to breast cancer. Pain, 111, 306–312.

    PubMed  CAS  Google Scholar 

  74. Hiraga, T., Williams, P. J., Mundy, G. R., & Yoneda, T. (2001). The bisphosphonate ibandronate promotes apoptosis in MDA-MB-231 human breast cancer cells in bone metastases. Cancer Research, 61, 4418–4424.

    PubMed  CAS  Google Scholar 

  75. Hiraga, T., Williams, P. J., Ueda, A., Tamura, D., & Yoneda, T. (2004). Zoledronic acid inhibits visceral metastases in the 4T1/luc mouse breast cancer model. Clinical Cancer Research, 10, 4559–4567.

    PubMed  CAS  Google Scholar 

  76. Ibrahim, A., Scher, N., Williams, G., Sridhara, R., Li, N., Chen, G., et al. (2003). Approval summary for zoledronic acid for treatment of multiple myeloma and cancer bone metastases. Clinical Cancer Research, 9, 2394–2399.

    PubMed  CAS  Google Scholar 

  77. Wardley, A., Davidson, N., Barrett-Lee, P., Hong, A., Mansi, J., Dodwell, D., et al. (2005). Zoledronic acid significantly improves pain scores and quality of life in breast cancer patients with bone metastases: A randomised, crossover study of community vs hospital bisphosphonate administration. British Journal of Cancer, 92, 1869–1876.

    PubMed  CAS  Google Scholar 

  78. Wood, J., Bonjean, K., Ruetz, S., Bellahcene, A., Devy, L., Foidart, J. M., et al. (2002). Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. Journal of Pharmacology and Experimental Therapeutics, 302, 1055–1061.

    PubMed  CAS  Google Scholar 

  79. Senaratne, S. G., Mansi, J. L., & Colston, K. W. (2002). The bisphosphonate zoledronic acid impairs Ras membrane [correction of impairs membrane] localisation and induces cytochrome c release in breast cancer cells. British Journal of Cancer, 86, 1479–1486.

    PubMed  CAS  Google Scholar 

  80. Hillner, B. E., Ingle, J. N., Berenson, J. R., Janjan, N. A., Albain, K. S., Lipton, A., et al. (2000). American Society of Clinical Oncology guideline on the role of bisphosphonates in breast cancer. American Society of Clinical Oncology Bisphosphonates Expert Panel. Journal of Clinical Oncology, 18, 1378–1391.

    PubMed  CAS  Google Scholar 

  81. Santen, R. J., & Harvey, H. A. (1999). Use of aromatase inhibitors in breast carcinoma. Endocrine-Related Cancer, 6, 75–92.

    PubMed  CAS  Google Scholar 

  82. Jordan, V. C. (2001). Selective estrogen receptor modulation: A personal perspective. Cancer Research, 61, 5683–5687.

    PubMed  CAS  Google Scholar 

  83. Early Breast Cancer Trialists’ Collaborative Group (1998).Tamoxifen for early breast cancer: An overview of the randomised trials. Lancet, 351, 1451–1467.

    Google Scholar 

  84. Jordan, V. C., & Koerner, S. (1975). Tamoxifen (ICI 46,474) and the human carcinoma 8S oestrogen receptor. European Journal of Cancer, 11, 205–206.

    PubMed  CAS  Google Scholar 

  85. Jordan, V. C., & Prestwich, G. (1977). Binding of [3H]tamoxifen in rat uterine cytosols: A comparison of swinging bucket and vertical tube rotor sucrose density gradient analysis. Molecular and Cellular Endocrinology, 8, 179–188.

    PubMed  CAS  Google Scholar 

  86. Osborne, C. K. (1998). Tamoxifen in the treatment of breast cancer. New England Journal of Medicine, 339, 1609–1618.

    PubMed  CAS  Google Scholar 

  87. Cole, M. P., Jones, C. T., & Todd, I. D. (1971). A new anti-oestrogenic agent in late breast cancer. An early clinical appraisal of ICI46474. British Journal of Cancer, 25, 270–275.

    PubMed  CAS  Google Scholar 

  88. Ward, H. W. (1973). Anti-oestrogen therapy for breast cancer: A trial of tamoxifen at two dose levels. British Medical Journal, 1, 13–14.

    Article  PubMed  CAS  Google Scholar 

  89. Love, R. R., Wiebe, D. A., Newcomb, P. A., Cameron, L., Leventhal, H., Jordan, V. C., et al. (1991). Effects of tamoxifen on cardiovascular risk factors in postmenopausal women. Annals of Internal Medicine, 115, 860–864.

    PubMed  CAS  Google Scholar 

  90. Love, R. R., Mazess, R. B., Barden, H. S., Epstein, S., Newcomb, P. A., Jordan, V. C., et al. (1992). Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. New England Journal of Medicine, 326, 852–856.

    Article  PubMed  CAS  Google Scholar 

  91. Litherland, S., & Jackson, I. M. (1988). Antioestrogens in the management of hormone-dependent cancer. Cancer Treatment Reviews, 15, 183–194.

    PubMed  CAS  Google Scholar 

  92. Sporn, M. B., Dowsett, S. A., Mershon, J., & Bryant, H. U. (2004). Role of raloxifene in breast cancer prevention in postmenopausal women: Clinical evidence and potential mechanisms of action. Clinical Therapeutics, 26, 830–840.

    PubMed  CAS  Google Scholar 

  93. Lamb, C. A., Helguero, L. A., Fabris, V., Lucas, C., Molinolo, A. A., & Lanari, C. (2003). Differential effects of raloxifene, tamoxifen and fulvestrant on a murine mammary carcinoma. Breast Cancer Research and Treatment, 79, 25–35.

    PubMed  CAS  Google Scholar 

  94. Taranta, A., Brama, M., Teti, A., De luca, V., Scandurra, R., Spera, G., et al. (2002). The selective estrogen receptor modulator raloxifene regulates osteoclast and osteoblast activity in vitro. Bone, 30, 368–376.

    PubMed  CAS  Google Scholar 

  95. Jordan, V. C. (1998). Designer estrogens. Scientific American, 279, 60–67.

    Article  PubMed  CAS  Google Scholar 

  96. Gradishar, W., Glusman, J., Lu, Y., Vogel, C., Cohen, F. J., & Sledge, G. W., Jr. (2000). Effects of high dose raloxifene in selected patients with advanced breast carcinoma. Cancer, 88, 2047–2053.

    PubMed  CAS  Google Scholar 

  97. Vogel, V. G., Costantino, J. P., Wickerham, D. L., Cronin, W. M., Cecchini, R. S., Atkins, J. N., et al. (2006). Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: The NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA, 295, 2727–2741.

    PubMed  CAS  Google Scholar 

  98. Sato, M., Turner, C. H., Wang, T., Adrian, M. D., Rowley, E., & Bryant, H. U. (1998). LY353381.HCl: A novel raloxifene analog with improved SERM potency and efficacy in vivo. Journal of Pharmacology and Experimental Therapeutics, 287, 1–7.

    PubMed  CAS  Google Scholar 

  99. Fabian, C. J., Kimler, B. F., Anderson, J., Tawfik, O. W., Mayo, M. S., Burak, W. E., Jr., et al. (2004). Breast cancer chemoprevention phase I evaluation of biomarker modulation by arzoxifene, a third generation selective estrogen receptor modulator. Clinical Cancer Research, 10, 5403–5417.

    PubMed  CAS  Google Scholar 

  100. Grese, T. A., Pennington, L. D., Sluka, J. P., Adrian, M. D., Cole, H. W., Fuson, T. R., et al. (1998). Synthesis and pharmacology of conformationally restricted raloxifene analogues: Highly potent selective estrogen receptor modulators. Journal of Medicinal Chemistry, 41, 1272–1283.

    PubMed  CAS  Google Scholar 

  101. Kangas, L. (1990). Biochemical and pharmacological effects of toremifene metabolites. Cancer Chemotherapy and Pharmacology, 27, 8–12.

    PubMed  CAS  Google Scholar 

  102. Ke, H. Z., Paralkar, V. M., Grasser, W. A., Crawford, D. T., Qi, H., Simmons, H. A., et al. (1998). Effects of CP-336,156, a new, nonsteroidal estrogen agonist/antagonist, on bone, serum cholesterol, uterus and body composition in rat models. Endocrinology, 139, 2068–2076.

    PubMed  CAS  Google Scholar 

  103. McClung, M. R., Siris, E., Cummings, S., Bolognese, M., Ettinger, M., Moffett, A., et al. (2006). Prevention of bone loss in postmenopausal women treated with lasofoxifene compared with raloxifene. Menopause, 13, 377–386.

    PubMed  Google Scholar 

  104. Hayes, D. F., Van Zyl, J. A., Hacking, A., Goedhals, L., Bezwoda, W. R., Mailliard, J. A., et al. (1995). Randomized comparison of tamoxifen and two separate doses of toremifene in postmenopausal patients with metastatic breast cancer. Journal of Clinical Oncology, 13, 2556–2566.

    PubMed  CAS  Google Scholar 

  105. Addo, S., Yates, R. A., & Laight, A. (2002). A phase I trial to assess the pharmacology of the new oestrogen receptor antagonist fulvestrant on the endometrium in healthy postmenopausal volunteers. British Journal of Cancer, 87, 1354–1359.

    PubMed  CAS  Google Scholar 

  106. Hu, X. F., Veroni, M., De Luise, M., Wakeling, A., Sutherland, R., Watts, C. K., et al. (1993). Circumvention of tamoxifen resistance by the pure anti-estrogen ICI 182,780. International Journal of Cancer, 55, 873–876.

    CAS  Google Scholar 

  107. Smith, I. E., & Dowsett, M. (2003). Aromatase inhibitors in breast cancer. New England Journal of Medicine, 348, 2431–2442.

    PubMed  CAS  Google Scholar 

  108. Mouridsen, H., & Gershanovich, M. (2003). The role of aromatase inhibitors in the treatment of metastatic breast cancer. Seminars in Oncology, 30, 33–45.

    PubMed  CAS  Google Scholar 

  109. Simpson, E. R. (2003). Sources of estrogen and their importance. Journal of Steroid Biochemistry and Molecular Biology, 86, 225–230.

    PubMed  CAS  Google Scholar 

  110. Bulun, S. E., Mahendroo, M. S., & Simpson, E. R. (1994). Aromatase gene expression in adipose tissue: Relationship to breast cancer. Journal of Steroid Biochemistry and Molecular Biology, 49, 319–326.

    PubMed  CAS  Google Scholar 

  111. Bulun, S. E., & Simpson, E. R. (1994). Regulation of aromatase expression in human tissues. Breast Cancer Research and Treatment, 30, 19–29.

    PubMed  CAS  Google Scholar 

  112. Baum, M., Buzdar, A., Cuzick, J., Forbes, J., Houghton, J., Howell, A., et al. (2003). Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early-stage breast cancer: Results of the ATAC (Arimidex, Tamoxifen alone or in combination) trial efficacy and safety update analyses. Cancer, 98, 1802–1810.

    PubMed  CAS  Google Scholar 

  113. Howell, A., Robertson, J. F., & Vergote, I. (2003). A review of the efficacy of anastrozole in postmenopausal women with advanced breast cancer with visceral metastases. Breast Cancer Research and Treatment, 82, 215–222.

    PubMed  CAS  Google Scholar 

  114. Baum, M., & Buzdar, A. (2003). The current status of aromatase inhibitors in the management of breast cancer. Surgical Clinics of North America, 83, 973–994.

    PubMed  Google Scholar 

  115. Goss, P. E., Ingle, J. N., Martino, S., Robert, N. J., Muss, H. B., Piccart, M. J., et al. (2003). A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. New England Journal of Medicine, 349, 1793–1802.

    PubMed  CAS  Google Scholar 

  116. Goss, P. E., Ingle, J. N., Martino, S., Robert, N. J., Muss, H. B., Piccart, M. J., et al. (2005). Randomized trial of letrozole following tamoxifen as extended adjuvant therapy in receptor-positive breast cancer: Updated findings from NCIC CTG MA.17. Journal of the National Cancer Institute, 97, 1262–1271.

    Article  PubMed  CAS  Google Scholar 

  117. Smith, I. E. (2003). Letrozole versus tamoxifen in the treatment of advanced breast cancer and as neoadjuvant therapy. Journal of Steroid Biochemistry and Molecular Biology, 86, 289–293.

    PubMed  CAS  Google Scholar 

  118. Mouridsen, H., Gershanovich, M., Sun, Y., Perez-Carrion, R., Boni, C., Monnier, A., et al. (2001). Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: Results of a phase III study of the International Letrozole Breast Cancer Group. Journal of Clinical Oncology, 19, 2596–2606.

    PubMed  CAS  Google Scholar 

  119. Mouridsen, H., Gershanovich, M., Sun, Y., Perez-Carrion, R., Boni, C., Monnier, A., et al. (2003). Phase III study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: Analysis of survival and update of efficacy from the International Letrozole Breast Cancer Group. Journal of Clinical Oncology, 21, 2101–2109.

    PubMed  CAS  Google Scholar 

  120. Thurlimann, B., Keshaviah, A., Coates, A. S., Mouridsen, H., Mauriac, L., Forbes, J. F., et al. (2005). A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. New England Journal of Medicine, 353, 2747–2757.

    PubMed  Google Scholar 

  121. Mincey, B. A., Duh, M. S., Thomas, S. K., Moyneur, E., Marynchencko, M., Boyce, S. P., et al. (2006). Risk of cancer treatment-associated bone loss and fractures among women with breast cancer receiving aromatase inhibitors. Clinical Breast Cancer, 7, 127–132.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muzaffer Cicek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cicek, M., Oursler, M.J. Breast cancer bone metastasis and current small therapeutics. Cancer Metastasis Rev 25, 635–644 (2006). https://doi.org/10.1007/s10555-006-9035-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-9035-x

Keywords

Navigation