Skip to main content

Advertisement

Log in

Proteomic Analysis of Human Cerebral Endothelial Cells Activated by Multiple Sclerosis Serum and IFNβ-1b

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Several groups have recently described the endothelial cell (EC) as an important target of pathological mediators in multiple sclerosis (MS). Despite the recognition of the EC as a significant target in MS and a possible beneficiary of Beta-interferon therapy, the structural changes which occur in the cerebrovascular endothelium and the effects of interferon-β1b on these changes have not been closely evaluated. Disruption or dysregulation of the blood brain barrier (BBB) in MS represents a loss of endothelial integrity, which may facilitate the transendothelial migration of activated leukocytes responsible for the development of demyelinating lesions of MS. We used proteomics (2-dimensional gel electrophoresis and MALDI-MS) to characterize the effects of serum from MS patients with active disease (with and without interferon-β1b therapy) on human cerebral endothelial cells. The results of this study revealed the up- and down-regulation of expression of several proteins related to blood vessel development, cell structure, and cell cycle control. Using this approach we have identified protein 14-3-3, metavinculin, myosin-9, plasminogen, reticulocalbin-2 and-3, ribonuclease/angiogenin inhibitor 1, annexin A1, tropomyosin and Ras-related protein Rap-1A as potential new markers of active MS disease. A more complete description of cerebrovascular endothelial biomarkers and mediators in MS pathogenesis and how they are regulated by inflammatory cytokines and β-interferons may lead to the development of more effective therapies and more accurate diagnostic markers in MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt, C., Duvefelt, K., Franzen, B., Yang, Y., & Engelhardt, B. (2005). Gene and protein expression profiling of the microvascular compartment in experimental autoimmune encephalomyelitis in C57Bl/6 and SJL mice. Brain Pathology, 15, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Martinez, M. T., Porte, F., Liautard, J. P., & Sri Widada, J. (1997). Effects of profilin-annexin I association on some properties of both profilin and annexin I: Modification of the inhibitory activity of profilin on actin polymerization and inhibition of the self-association of annexin I and its interactions with liposomes. Biochimica et Biophysica Acta, 1339, 331–340.

    PubMed  CAS  Google Scholar 

  • Badet, J., Soncin, F., N’Guyen, T., & Barritault, D. (1990). In vivo and in vitro studies of angiogenin—A potent angiogenic factor. Blood Coagulation & Fibrinolysis, 1, 721–724.

    CAS  Google Scholar 

  • Bomsztyk, K., Van Seuningen, I., Suzuki, H., Denisenko, O., & Ostrowski, J. (1997). Diverse molecular interactions of the hnRNP K protein. FEBS Letters, 403, 113–115.

    Article  PubMed  CAS  Google Scholar 

  • Burgess-Cassler, A., Johansen, J. J., Santek, D. A., Ide, J.R., & Kendrick, N. C. (1989). Computerized quantitative analysis of coomassie-blue-stained serum proteins separated by two-dimensional electrophoresis. Clinical Chemistry, 35, 2297–2304.

    PubMed  CAS  Google Scholar 

  • Carlson, N. G., & Rose, J. W. (2006). Antioxidants in multiple sclerosis: Do they have a role in therapy? CNS Drugs, 20, 433–441.

    Article  PubMed  CAS  Google Scholar 

  • Carper, D., John, M., Chen, Z., Subramanian, S., Wang, R., Ma, W., et al. (2001). Gene expression analysis of an H(2)O(2)-resistant lens epithelial cell line. Free Radical Biology & Medicine, 31, 90–97.

    Article  CAS  Google Scholar 

  • Chen, J. M., Grad, R., Monaco, R., & Pincus, M. R. (1996a). Prediction of the three-dimensional structure of the rap-1A protein from its homology to the ras-gene-encoded p21 protein. Journal of Protein Chemistry, 15, 11–15.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J. M., Manolatos, S., Brandt-Rauf, P. W., Murphy, R. B., Monaco, R., & Pincus, M. R. (1996b). Computed three-dimensional structures for the ras-binding domain of the raf-p74 protein complexed with ras-p21 and with its suppressor protein, rap-1A. Journal of Protein Chemistry, 15, 511–518.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J. M., Monaco, R., Manolatos, S., Brandt-Rauf, P. W., Friedman, F. K., & Pincus, M. R. (1997). Molecular Dynamics on complexes of ras-p21 and its inhibitor protein, rap-1A, bound to the ras-binding domain of the raf-p74 protein: Identification of effector domains in the raf-protein. Journal of Protein Chemistry, 16, 619–629.

    Article  PubMed  CAS  Google Scholar 

  • Chiba, S., Yokota, S., Yonekura, K., Tanaka, S., Furuyama, H., Kubota, H. et al. (2006). Autoantibodies against HSP70 family proteins were detected in the cerebrospinal fluid from patients with multiple sclerosis. Journal of the Neurological Sciences, 241, 39–43.

    Article  PubMed  CAS  Google Scholar 

  • Colucci, M., Roccatagliata, L., Capello, E., Narciso, E., Latronico, N., Tabaton, M., et al. (2004). The 14-3-3 protein in multiple sclerosis: A marker of disease severity. Multiple Sclerosis, 10, 477–481.

    Article  PubMed  CAS  Google Scholar 

  • Dreier, R., Schmid, K. W., Gerke, V., & Riehemann, K. (1998). Differential expression of annexins I, II, and IV in human tissues: An immunohistochemical study. Histochemistry & Cell Biology, 110, 137–148.

    Article  CAS  Google Scholar 

  • D’Acquisto, F., Merghani, A., Lecona, E., Rosignoli, G., Raza, K., Buckley, C.D., et al. (2007). Annexin-1 modulates T-cell activation and differentiation. Blood, 109, 1095–1102.

    Article  PubMed  CAS  Google Scholar 

  • Franzen, B., Duvefelt, K., Jonsson, C., Engelhardt, B., Ottervald, J., Wickman, M., et al. (2003). Gene and protein expression profiling of human cerebral endothelial cells activated with tumor necrosis factor-alpha. Brain Research Molecular Brain Research, 115, 130–146.

    Article  PubMed  CAS  Google Scholar 

  • Frohman, E. M., Racke, M. K., & Raine, C. S. (2006). Multiple sclerosis-the plaque and its pathogenesis. New England Journal of Medicine, 354, 942–955.

    Article  PubMed  CAS  Google Scholar 

  • Ghitescu, L. D., Gugliucci, A., & Dumas, F. (2001). Annexins I and II are among the main endothelial plasmalemma-associated proteins forming early glucose adducts in experimental diabetes. Diabetes, 50, 1666–1674.

    Article  PubMed  CAS  Google Scholar 

  • Hengstschlager, M., Rosner, M., Fountoulakis, M., & Lubec, G. (2005). The cellular response to ectopic overexpression of the tuberous sclerosis genes, TSC1 and TSC2: A proteomic approach. International Journal of Oncology, 27, 831–838.

    PubMed  Google Scholar 

  • Honore, B., & Vorum, H. (2000). The CREC family, a novel family of multiple EF-hand, low-affinity Ca(2+)-binding proteins localised to the secretory pathway of mammalian cells. FEBS Letter, 466, 11–18.

    Article  CAS  Google Scholar 

  • Huitinga, I., Bauer, J., Strijbos, P. J., Rothwell, N. J., Dijkstra, C. D., & Tilders, F. J. (1998). Effects of annexin-1 on experimental autoimmune encephalomyelitis (EAE) in the rat. Clinical and Experimental Immunology, 111, 198–204.

    Article  PubMed  CAS  Google Scholar 

  • Imitola, J., Chitnis, T., & Khoury, S. J. (2006). Insights into the molecular pathogenesis of progression in multiple sclerosis: Potential implications for future therapies. Archives of Neurology, 63, 25–33.

    Article  PubMed  Google Scholar 

  • Kaneko, K., & Hachiya, N. S. (2006). The alternative role of 14-3-3 zeta as a sweeper of misfolded proteins in disease conditions. Medical Hypotheses, 67, 169–171.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. M., & Shah, A. M. (2003). Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit. Journal of Biological Chemistry, 278, 12094–12100.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Yelamos, A., Rovira, A., Sanchez-Valle, R., Martinez-Yelamos, S., Tintore, M., Blanco, Y., et al. (2004). CSF 14-3-3 protein assay and MRI as prognostic markers in patients with a clinically isolated syndrome suggestive of MS. Journal of Neurology, 251, 1278–1279.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, W. I., Compston, A., Edan, G., Goodkin, D., Hartung, H. P., Lublin, F. D., et al. (2001). Recommended diagnostic criteria for multiple sclerosis: Guidelines from the International Panel on the diagnosis of multiple sclerosis. Annals of Neurology, 50, 121–127.

    Article  PubMed  CAS  Google Scholar 

  • Minagar, A., & Alexander, J. S. (2003). Blood–brain barrier disruption in multiple sclerosis. Multiple Sclerosis, 9, 540–549.

    Article  PubMed  CAS  Google Scholar 

  • Minagar, A., Ostanin, D., Long, A. C., Jennings, M., Kelley, R. E., Sasaki, M., et al. (2003). Serum from patients with multiple sclerosis downregulates occludin isoforms and VE-cadherin expression in cultured endothelial cells. Multiple Sclerosis, 9, 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Morales, Y., Parisi, J. E., & Lucchinetti, C. F. (2006). The pathology of multiple sclerosis: Evidence for heterogeneity. Advances in Neurology, 98, 27–45.

    PubMed  Google Scholar 

  • Morand, E. F., Hall, P., Hutchinson, P., & Yang, Y. H. (2006). Regulation of annexin I in rheumatoid synovial cells by glucocorticoids and interleukin-1. Mediators of Inflammation, 2006, 1–6.

    Article  CAS  Google Scholar 

  • Norton, W. T., Brosnan, C. F., Cammer, W., & Goldmuntz, E. A. (1990). Mechanisms and suppression of inflammatory demyelination. Acta Neurobiologiae Experimentalis (Wars), 50, 225–235.

    CAS  Google Scholar 

  • Noseworthy, J. H., Lucchinetti, C., Rodriguez, M., & Weinshenker, B. G. (2000). Multiple sclerosis. New England Journal of Medicine, 343, 938–952.

    Article  PubMed  CAS  Google Scholar 

  • Oakley, B. R., Kirsch, D. R., & Morris, N. R. (1980). A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Analytical Biochemistry, 105, 361–363.

    Article  PubMed  CAS  Google Scholar 

  • O’Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry, 250, 4007–4021.

    CAS  Google Scholar 

  • Probst-Cousin, S., Kowolik, D., Kuchelmeister, K., Kayser, C., Neundorfer, B., & Heuss, D. (2002). Expression of annexin-1 in multiple sclerosis plaques. Neuropathology & Applied Neurobiology, 4, 292–300.

    Google Scholar 

  • Quinn, M. T., Parkos, C. A., & Jesaitis, A. J. (1995). Purification of human neutrophil NADPH oxidase cytochrome b-558 and association with RAP 1A. Methods in Enzymology, 255, 476–487.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo, J. P., Garcia-Pedrero, J. M., Gonzalez, M. V., Fernandez, M. P., Suarez, C., & Herrero, A. (2004). Expression of annexin A1 in normal and chronically inflamed nasal mucosa. Archives of Otolaryngology, Head & Neck Surgery, 130, 211–215.

    Article  Google Scholar 

  • Satoh, J., Yamamura, T., & Arima, K. (2004). The 14-3-3 protein epsilon isoforms expressed in reactive astrocytes in demyelinating lesions of multiple sclerosis binds to vimentin and glial fibrillary acidic protein in cultured human astrocytes. American Journal of Pathology, 165, 577–592.

    PubMed  CAS  Google Scholar 

  • Satoh, J. I., Tabunoki, H., Nanri, Y., Arima, K., & Yamamura, T. (2006). Human astrocytes express 14-3-3 sigma in response to oxidative and DNA-damaging stresses. Neuroscience Research, 56, 61–72.

    Article  PubMed  CAS  Google Scholar 

  • Sawmynaden, P., & Perretti, M. (2006). Glucocorticoid upregulation of the annexin-A1 receptor in leukocytes. Biochemical and Biophysical Research Communications, 349, 1351–1355.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, R., Schneider-Scherzer, E., Thurnher, M., Auer, B., & Schweiger, M. (1998). The primary structure of human ribonuclease/angiogenin inhibitor (RAI) discloses a novel highly diversified protein superfamily with a common repetitive module. EMBO Journal, 7, 4151–4156.

    Google Scholar 

  • Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., et al. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150, 76–85.

    Article  PubMed  CAS  Google Scholar 

  • Stone, L. A., Frank, J. A., Albert, P. S., Bash, C., Smith, M. E., Maloni, H., et al. (1995). The effect of interferon-beta on blood–brain barrier disruptions demonstrated by contrast-enhanced magnetic resonance imaging in relapsing-remitting multiple sclerosis. Annals of Neurology, 37, 611–619.

    Article  PubMed  CAS  Google Scholar 

  • Su, J. J., Osoegawa, M., Matsuoka, T., Minohara, M., Tanaka, M., Ishizu, T., et al. (2006). Upregulation of vascular growth factors in multiple sclerosis: Correlation with MRI findings. Journal of the Neurological Sciences, 243, 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Teunissen, C. E., Dijkstra, C., & Polman, C. (2005). Biological markers in CSF and blood for axonal degeneration in multiple sclerosis. Lancet Neurology, 4, 32–41.

    Article  PubMed  Google Scholar 

  • Thisted, T., Lyakhov, D. L., & Liebhaber, S. A. (2001). Optimized RNA targets of two closely related triple KH domain proteins, heterogeneous nuclear ribonucleoprotein K and alphaCP-2KL, suggest distinct modes of RNA recognition. Journal of Biological Chemistry, 276, 17484–17496.

    Article  PubMed  CAS  Google Scholar 

  • van Horssen, J., Schreibelt, G., Bo, L., Montagne, L., Drukarch, B., van Muiswinkel, F. L., et al. (2006). NAD(P)H:quinone oxidoreductase 1 expression in multiple sclerosis lesions. Free Radical Biology & Medicine, 41, 311–317.

    Article  CAS  Google Scholar 

  • Wolthuis, R. M., Bauer, B., van’t Veer, L. J., de Vries-Smits, A. M., Cool, R. H, Spaargaren, M., et al. (1996). RalGDS-like factor (Rlf) is a novel Ras and Rap 1A-associating protein. Oncogene, 13, 353–362.

    PubMed  CAS  Google Scholar 

  • Yong, V. W. (2002). Differential mechanisms of action of interferon-beta and glatiramer acetate in MS. Neurology, 59, 802–808.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Minagar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, J.S., Minagar, A., Harper, M. et al. Proteomic Analysis of Human Cerebral Endothelial Cells Activated by Multiple Sclerosis Serum and IFNβ-1b. J Mol Neurosci 32, 169–178 (2007). https://doi.org/10.1007/s12031-007-0018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-0018-3

Keywords

Navigation