Skip to main content

Advertisement

Log in

Genetic and Histopathological Alterations in Caco-2 and HuH-7 Cells Treated with Secondary Metabolites of Marine fungi

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

The present work aimed to study the activity of naturally derived fungal secondary metabolites as anticancer agents concerning their cytotoxicity, apoptotic, genetic, and histopathological profile. It was noticed that Aspergillus terreus, Aspergillus flavus, and Aspergillus fumigatus induced variable toxic potential that was cell type, secondary metabolite type, and concentration dependent. Human colonic adenocarcinoma cells (Caco-2) showed less sensitivity than hepatocyte-derived cellular carcinoma cells (HuH-7), and in turn, the half-maximal inhibitory concentration (IC50) was variable. Also, the apoptotic potential of Aspergillus species-derived fungal secondary metabolites was proven via detection of up-regulated pro-apoptotic genes and down-regulation of anti-apoptotic genes. The expression level was cell type dependent. Concurrently, apoptotic profile was accompanied with cellular DNA accumulation at the G2/M phase, as well as an elevation in Pre-G1 phase but not during G0/G1 and S phases. Also, there were characteristic apoptotic features of treated cells presented as abnormal intra-nuclear eosinophilic structures, dead cells with mixed euchromatin and heterochromatin, ruptured cell membranes, apoptotic cells with irregular cellular and nuclear membranes, as well as peripheral chromatin condensation. It can be concluded that Aspergillus secondary metabolites are promising agents that can be used as supplementary agents to the currently applied anti-cancer drug regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cragg GM, Newman DJ. Nature a vital source of leads for anticancer drug development. Phytochem Rev. 2009;2009(8):313–31.

    Article  CAS  Google Scholar 

  2. Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anticancer agents. Chem Rev. 2009;109:3012–43.

    Article  CAS  PubMed  Google Scholar 

  3. Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 Years. J Nat Prod. 2007;70:461–77.

    Article  CAS  PubMed  Google Scholar 

  4. Lima RT, Guimarães JE, Vasconcelos MH Overcoming K562Dox resistance to STI571 (Gleevec) by down regulation of P-gp expression using siRNAs. Cancer Ther. 5:67–76.

  5. Newman DJ, Cragg GM. Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod. 2004;67:1216–38.

    Article  CAS  PubMed  Google Scholar 

  6. Simmons TL, Andrianasolo E, McPhail K, Flatt PM, Gerwick WH. Marine natural products as anticancer drugs. Mol Cancer Ther. 2005;4:333–42.

    CAS  PubMed  Google Scholar 

  7. Simmons TL, Coates RC, Clark BR, Eugene N, Gonzalez D, Esquenazi E, et al. Biosynthetic origin of natural products isolated from marine organisms-invertebrate assemblages. Proc Natl Acad Sci USA. 2008;105:4587–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bugni TS, Ireland CM. Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep. 2004;21:143–64.

    Article  CAS  PubMed  Google Scholar 

  9. Podojil M, Sedmera P, Vokoun J, Betina V, Baráthová H, Ďuračková C, et al. Eurotium (Aspergilus) repens metabolites and their biological activity. Folia Microbiol. 1979;23:438–43.

    Article  Google Scholar 

  10. Smetanina OF, Kalinovskii AI, Khudyakova YV, Slinkina NN, Pivkin MV, Kuznetsova TA. Metabolites from the marine fungus Eurotium repens. Chem Nat Comp. 2007;43:395–8.

    Article  CAS  Google Scholar 

  11. Li X-D, Li X, Li XM, Xu GM, Zhang P, Meng LH, et al. Tetranorlabdane diterpenoids from the deep sea sediment derived fungus Aspergillus wentii SD-310. Planta Med. 2016;82:877–81.

    Article  CAS  PubMed  Google Scholar 

  12. Slack GJ, Puniani E, Frisvad JC, Samson RA, Miller JD. Secondary metabolites from Eurotium species, Aspergillus calidoustus and A. insuetus common in Canadian homes with a review of their chemistry and biological activities. Mycol Res. 2009;113:480–90.

    Article  CAS  PubMed  Google Scholar 

  13. Visalakchi S, Muthumary J. (2010): Taxol (anticancer drug) producing endophytic fungi: an overview. Int J Pharm Bio Sci. 2010;1:1–9.

    Google Scholar 

  14. Li JE, Cui SW, Nie SP, Xie MY. Structure and biological activities of a pectic polysaccharide from Mosla chinensis Maxim. cv Jiangxiangru. Carbohyd Polym. 2014;105:276–84.

    Article  CAS  Google Scholar 

  15. Grove JF. The structure of Terrein. J Chem Soc. 1954;4693–4.

  16. Dunn AW, Ian DE, Johnstone AW. Terrein and other metabolites of Phoma species. Phytochemistry. 1975;14:2081–2.

    Article  CAS  Google Scholar 

  17. Gressler M, Meyer F, Heine D, Hortschansky P, Hertweck C, Brock M. Elife. 2015;14:4. https://doi.org/10.7554/eLife.07861.

    Article  Google Scholar 

  18. Park SH, Kim DS, Kim WG, Ryoo IJ, Lee DH, Huh CH, et al. Terrein: a new melanogenesis inhibitor and its mechanism. Cell Mol Life Sci. 2004;61:2878–85.

    Article  CAS  PubMed  Google Scholar 

  19. Kim DS, Cho HJ, Lee HK, Lee WH, Park ES, Youn SW. Terrein, a fungal metabolite, inhibits the epidermal proliferation of skin equivalents. J Dermatol Sci. 2006;46:65–8. https://doi.org/10.1016/j.jdermsci.11.011.

    Article  Google Scholar 

  20. Lee HY, Jung JE, Kim JS, Lee HN, Yi KH. Terrein reduces age-related inflammation induced by oxidative stress through Nrf2/ERK1/2/HO-1 signalling in aged HDF cells. Cell Biochem Funct. 2015;33:479–86.

    Article  CAS  PubMed  Google Scholar 

  21. Liao WY, Shen CN, Lin LH, Yang YL, Han HY. Asperjinone, a nor-neolignan, and terrein, a suppressor of ABCG2-expressing breast cancer cells, from thermophilic Aspergillus terreus. J Nat Prod. 2012;75:630–5.

    Article  CAS  PubMed  Google Scholar 

  22. Arakawa M, Someno T, Kawada M, Ikeda D. A new terrein glucoside, a novel inhibitor of angiogenin secretion in tumor angiogenesis. J Antibiot. 2008;61:442–8.

    Article  CAS  Google Scholar 

  23. Liao W-Y, Shen C-N, Lin L-H, Yang Y-L, Han H-Y, Chen J-W, Kuo S-C, Wu S-H, Liaw CC. Asperjinone, a nor-neolignan, and terrein, a suppressor of ABCG2-expressing breast cancer cells, from thermophilic Aspergillus terreus. J Nat Prod. 2012;75:630–5.

    Article  CAS  PubMed  Google Scholar 

  24. Rebacz B, Larsen TO, Clausen MH, Rønnest MH, Löffler H, Ho AD, Krämer A. Identification of griseofulvin as an inhibitor of centrosomal clustering in a phenotype-based screen. Cancer Res. 2007;67:6342–50.

    Article  CAS  PubMed  Google Scholar 

  25. Rønnest MH, Rebacz B, Markworth L, Terp AH, Larsen TO, Krämer A, Clausen MH. Synthesis and structure-activity relationship of griseofulvin analogues as inhibitors of centrosomal clustering in cancer cells. J Med Chem. 2009;52:3342–7.

    Article  PubMed  CAS  Google Scholar 

  26. Muroga Y, Yamada T, Numata A, Tanaka R. 11- and 4’-epimers of chaetomugilin A, novel cytostatic metabolites from marine fish-derived fungus Chaetomium globosum. Helv Chim Acta. 2010;93:542–9.

    Article  CAS  Google Scholar 

  27. Panda D, Rathinasamy K, Santra MK, Wilson L. Kinetic suppression of microtubule dynamic instability by griseofulvin: implications for its possible use in the treatment of cancer. Proc Natl Acad Sci USA. 2005;102:9878–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamada T, Jinno M, Kikuchi T, Kajimoto T, Numata A, Tanaka R. Three new azaphilones produced by a marine fish-derived Chaetomium globosum. J Antibiot. 2012;65:413–7.

    Article  CAS  Google Scholar 

  29. Kohler DR. Goldspiel, B.R. Paclitaxel (taxol). Pharmacotherapy. 1994;14:3–34.

    Article  CAS  PubMed  Google Scholar 

  30. Kim SH, Lee SC, Song YS. Involvement of both extrinsic and Intrinsic apoptotic pathways in apoptosis induced by genistein in human cervical cancer cells. Ann NY Acad Sci. 2009;1171:196–201.

    Article  CAS  PubMed  Google Scholar 

  31. Hougardy BM, van der Zee AG, van den Heuvel FA, Timmer T, de Vries EG, de Jong S. Sensitivity to Fas-mediated apoptosis in high-risk HPV- positive human cervical cancer cells: relationship with Fas, caspase-8, and Bid. Gynecol Oncol. 2005;97:353–64.

    Article  CAS  PubMed  Google Scholar 

  32. Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature. 1979;277:665–7.

    Article  CAS  PubMed  Google Scholar 

  33. Chen G-D, Li Y-J, Gao H, Chen Y, Li X-X, Li J, Guo L-D, Cen Y-Z, Yao X-S. New azaphilones and chlorinated phenolic glycosides from Chaetomium elatum with caspase-3 inhibitory activity. Planta Med. 2012;78:1683–9.

    Article  CAS  PubMed  Google Scholar 

  34. Ahn J-W, Lee M-K, Choi S-U, Lee C-O, Kim B-S. Cytotoxic ophiobolins produced by Bipolaris sp. J Microbiol Biotechn. 1998;8:406–8.

    CAS  Google Scholar 

  35. Singh SB, Smith JL, Sabnis GS, Dombrowski AW, Schaeffer JM, Goetz MA, Bills GF. Structure and conformation of ophiobolin K and 6- epiophiobolin K from Aspergillus ustus as a nematocidal agent. Tetrahedron. 1991;47:6931–8.

    Article  CAS  Google Scholar 

  36. Nozoe S, Itai A, Tsuda K, Okuda S. The chemical transformation of cephalonic acid. Tetrahedron Lett. 1967;42:4113–7.

    Article  CAS  PubMed  Google Scholar 

  37. Bills GF, Platas G, Gams W. Conspecificity of the cerulenin and helvolic acid producing “Cephalosporium caerulens”, and the hypocrealean fungus Sarocladium oryzae. Mycol Res. 2004;108:1291–300.

    Article  CAS  PubMed  Google Scholar 

  38. Pardo J, Urban C, Galvez EM, Ekert PG, Müller U, Kwon-Chung J, Lobigs M, Müllbacher A, Wallich R, Borner C, Simon MM. The mitochondrial protein Bak is pivotal for gliotoxin-induced apoptosis and a critical host factor of Aspergillus fumigatus virulence in mice. JCB Home » Archive. 2016;174 (4): 509.

  39. Li H, Liu X, Xu Y, Wang X, Zhu H. Structure and antitumor activity of the extracellular polysaccharides from Aspergillus aculeatus via apoptosis and cell cycle arrest. Glycoconj J. 2016;33:975-984.

  40. Trown PW, Bilello JA. Mechanism of action of gliotoxin: elimination of activity by sulfhydryl compounds. Antimicrob Agents Chemother. 1972;2:261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Waring P, Beaver J. Gliotoxin and related Epipolythio dioxopiperazines. Gen Pharmacol. 1996;27:1311–6.

    Article  CAS  PubMed  Google Scholar 

  42. Gardiner DM, Waring P, Howlett BJ. The epipolythio dioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology. 2005;151:1021–32.

    Article  CAS  PubMed  Google Scholar 

  43. Pardo J, Urban C, Galvez EM, et al. The mitochondrial protein Bak is pivotal for gliotoxin-induced apoptosis and a critical host factor of Aspergillus fumigatus virulence in mice. J Cell Biol. 2006;174:509–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hamed A, Abdel-Razek AS, Araby M, Abu-Elghait M, El-Hosari DG, Frese M, Shaaban M. Meleagrin from marine fungus Emericella dentata Nq45: crystal structure and diverse biological activity studies. Nat Prod Res. 2020;1–9.

  45. Mohamed AA, Abu-Elghait M, Ahmed NE, Salem SS. Eco-friendly Mycogenic Synthesis of ZnO and CuO Nanoparticles for In Vitro Antibacterial, Antibiofilm, and Antifungal Applications. Biol Trace Elem Res. 2020:1–12.

  46. Abu-Elghait M, Hasanin M, Hashem AH, Salem SS. Ecofriendly novel synthesis of tertiary composite based on cellulose and myco-synthesized selenium nanoparticles: Characterization, antibiofilm and biocompatibility. Int J Biol Macromol. 2021;175:294–303.

    Article  CAS  PubMed  Google Scholar 

  47. Salem SS, Mohamed A, El-Gamal M, Talat M, Fouda A. Biological decolorization and degradation of azo dyes from textile wastewater effluent by Aspergillus niger. Egypt J Chem. 2019;62(10):1799–813.

    Google Scholar 

  48. Hashem AH, Khalil AMA, Reyad AM, Salem SS. Biomedical applications of mycosynthesized selenium nanoparticles using Penicillium expansum ATTC 36200. Biol Trace Elem Res. 2021;1–11.

  49. Salem SS, Fouda MM, Fouda A, Awad MA, Al-Olayan EM, Allam AA, Shaheen TI. Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. J Cluster Sci. 2021;32(2):351–61.

    Article  CAS  Google Scholar 

  50. Abdelmoneim HE, Wassel MA, Elfeky AS, Bendary SH, Awad MA, Salem SS, Mahmoud SA. Multiple applications of CdS/TiO 2 nanocomposites synthesized via microwave-assisted sol–gel. J Clust Sci. 2021;1–10.

  51. Desouky SE, Hassan SE, El-gamal MS, Ragab MAETI, Emam M. Effect of Salvia egypticae and Foeniculum vulgara extracts on quorum sensing and biofilm formation of methicillin resistant/sensitive staphylococcus aureus isolates. World J Pharm Med Res. 2017;3:466–75.

    Google Scholar 

  52. Abdelhameed RM, Abu-Elghait M, El-Shahat M. Hybrid three MOFs composites (ZIF-67@ ZIF-8@ MIL-125-NH2): enhancement the biological and visible-light photocatalytic activity. J Environ Chem Eng. 2020;8(5):104107.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors extend their appreciation to the International Center for training and Advanced Researches (ICTAR–Egypt) for partial financial supporting this work through research groups. Also, the authors extend their appreciation to Al-Azhar University.

Author information

Authors and Affiliations

Authors

Contributions

Aly Fahmy Mohamed: conceptualization, methodology, resources, investigation, software, writing-original draft. Tamer. M. M. Abuamara: resources, investigation, software, writing-review. Mohamed E. Amer: methodology, investigation, software, writing-review. Laila. E. EI-Moselhy: methodology, resources, validation, writing-review. Tamer Albasyoni Gomah: methodology, software, validation, writing-review Said Desouky: methodology, investigation, software, validation, writing-review. Emadeldin R. Matar: methodology, resources, software, validation, writing-review. Rania Ibrahim Shebl: methodology, resources, investigation, writing-original draft, writing-review. Mohammed Abu-Elghait: conceptualization, methodology, resources, investigation, software, writing-original draft, writing-review, editing and submitting the paper to the journal.

Corresponding author

Correspondence to Mohammed Abu-Elghait.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

Aspergillus terreus, Aspergillus flavus, and Aspergillus fumigatus secondary metabolite induce toxic effect against Human colonic adenocarcinoma cells (Caco-2) and Hepatocyte derived cellular carcinoma cells (HuH-7).

• Up regulation of pro-apoptotic genes and down-regulation of anti-apoptotic genes was detected. The expression level was cell type dependent.

Aspergillus secondary metabolites are promising agents that can be used as supplementary agents to currently applied anti- cancer drug regimen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, A.F., Abuamara, T.M.M., Amer, M.E. et al. Genetic and Histopathological Alterations in Caco-2 and HuH-7 Cells Treated with Secondary Metabolites of Marine fungi. J Gastrointest Canc 53, 480–495 (2022). https://doi.org/10.1007/s12029-021-00640-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-021-00640-y

Keywords

Navigation