Skip to main content

Advertisement

Log in

Leveraging Continuous Vital Sign Measurements for Real-Time Assessment of Autonomic Nervous System Dysfunction After Brain Injury: A Narrative Review of Current and Future Applications

  • Big Data in Neurocritical Care
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Subtle and profound changes in autonomic nervous system (ANS) function affecting sympathetic and parasympathetic homeostasis occur as a result of critical illness. Changes in ANS function are particularly salient in neurocritical illness, when direct structural and functional perturbations to autonomic network pathways occur and may herald impending clinical deterioration or intervenable evolving mechanisms of secondary injury. Sympathetic and parasympathetic balance can be measured quantitatively at the bedside using multiple methods, most readily by extracting data from electrocardiographic or photoplethysmography waveforms. Work from our group and others has demonstrated that data-analytic techniques can identify quantitative physiologic changes that precede clinical detection of meaningful events, and therefore may provide an important window for time-sensitive therapies. Here, we review data-analytic approaches to measuring ANS dysfunction from routine bedside physiologic data streams and integrating this data into multimodal machine learning–based model development to better understand phenotypical expression of pathophysiologic mechanisms and perhaps even serve as early detection signals. Attention will be given to examples from our work in acute traumatic brain injury on detection and monitoring of paroxysmal sympathetic hyperactivity and prediction of neurologic deterioration, and in large hemispheric infarction on prediction of malignant cerebral edema. We also discuss future clinical applications and data-analytic challenges and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Karemaker JM. An introduction into autonomic nervous function. Physiol Meas. 2017;38:R89–118.

    Article  PubMed  Google Scholar 

  2. Agarwal SK, Calaresu FR. Electrical stimulation of nucleus tractus solitarius excites vagal preganglionic cardiomotor neurons of the nucleus ambiguus in rats. Brain Res. 1992;574:320–4.

    Article  CAS  PubMed  Google Scholar 

  3. Kimmerly DS. A review of human neuroimaging investigations involved with central autonomic regulation of baroreflex-mediated cardiovascular control. Auton Neurosci. 2017;207:10–21.

    Article  PubMed  Google Scholar 

  4. Palma JA, Benarroch EE. Neural control of the heart: recent concepts and clinical correlations. Neurology. 2014;83:261–71.

    Article  PubMed  Google Scholar 

  5. Shoemaker JK, Goswami R. Forebrain neurocircuitry associated with human reflex cardiovascular control. Front Physiol. 2015;6:240.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tahsili-Fahadan P, Geocadin RG. Heart–brain axis: effects of neurologic injury on cardiovascular function. Circ Res. 2017;120:559–72.

    Article  CAS  PubMed  Google Scholar 

  7. Dimitri GM, Agrawal S, Young A, Donnelly J, Liu X, Smielewski P, et al. A multiplex network approach for the analysis of intracranial pressure and heart rate data in traumatic brain injured patients. Appl Netw Sci. 2017;2:29.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dimitri GM, Agrawal S, Young A, Donnelly J, Liu X, Smielewski P, et al. Simultaneous transients of intracranial pressure and heart rate in traumatic brain injury: methods of analysis. Acta Neurochir Suppl. 2018;126:147–51.

    Article  PubMed  Google Scholar 

  9. Dimitri GM, Beqiri E, Placek MM, Czosnyka M, Stocchetti N, Ercole A, et al. Modeling brain–heart crosstalk information in patients with traumatic brain injury. Neurocrit Care. 2021. https://doi.org/10.1007/s12028-021-01353-7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wee BYH, Lee JH, Mok YH, Chong SL. A narrative review of heart rate and variability in sepsis. Ann Transl Med. 2020;8:768.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brinza C, Floria M, Covic A, Burlacu A. Measuring heart rate variability in patients admitted with st-elevation myocardial infarction for the prediction of subsequent cardiovascular events: a systematic review. Medicina (Kaunas). 2021;57:1021.

    Article  Google Scholar 

  12. Cooke WH, Salinas J, Convertino VA, Ludwig DA, Hinds D, Duke JH, et al. Heart rate variability and its association with mortality in prehospital trauma patients. J Trauma. 2006;60:363–70 (discussion 370).

    Article  PubMed  Google Scholar 

  13. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81.

    Article  Google Scholar 

  14. Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M, et al. Prospective study of heart rate variability and mortality in chronic heart failure: results of the united kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation. 1998;98:1510–6.

    Article  CAS  PubMed  Google Scholar 

  15. Toweill D, Sonnenthal K, Kimberly B, Lai S, Goldstein B. Linear and nonlinear analysis of hemodynamic signals during sepsis and septic shock. Crit Care Med. 2000;28:2051–7.

    Article  CAS  PubMed  Google Scholar 

  16. Garrard CS, Kontoyannis DA, Piepoli M. Spectral analysis of heart rate variability in the sepsis syndrome. Clin Auton Res. 1993;3:5–13.

    Article  CAS  PubMed  Google Scholar 

  17. Heinroth KM, Kuhn C, Stache N. Attenuated heart rate variability in septic and non septic shock multiple organ dysnfunction syndrome. Intensvivmed. 1993;36:436–45.

    Article  Google Scholar 

  18. Dunser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med. 2009;24:293–316.

    Article  PubMed  Google Scholar 

  19. Baguley IJ, Nicholls JL, Felmingham KL, Crooks J, Gurka JA, Wade LD. Dysautonomia after traumatic brain injury: a forgotten syndrome? J Neurol Neurosurg Psychiatry. 1999;67:39–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Biswas AK, Scott WA, Sommerauer JF, Luckett PM. Heart rate variability after acute traumatic brain injury in children. Crit Care Med. 2000;28:3907–12.

    Article  CAS  PubMed  Google Scholar 

  21. Haji-Michael PG, Vincent JL, Degaute JP, van de Borne P. Power spectral analysis of cardiovascular variability in critically ill neurosurgical patients. Crit Care Med. 2000;28:2578–83.

    Article  CAS  PubMed  Google Scholar 

  22. Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16:987–1048.

    Article  PubMed  Google Scholar 

  23. Monsour M, Ebedes D, Borlongan CV. A review of the pathology and treatment of tbi and ptsd. Exp Neurol. 2022;351:114009.

    Article  CAS  PubMed  Google Scholar 

  24. Valenza G, Toschi N, Barbieri R. Uncovering brain–heart information through advanced signal and image processing. Philos Trans A Math Phys Eng Sci. 2016;374:20160020.

    PubMed  PubMed Central  Google Scholar 

  25. Hu PF, Yang S, Li HC, Stansbury LG, Yang F, Hagegeorge G, et al. Reliable collection of real-time patient physiologic data from less reliable networks: a “monitor of monitors” system (moms). J Med Syst. 2017;41:3.

    Article  PubMed  Google Scholar 

  26. Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput. 2006;44:1031–51.

    Article  Google Scholar 

  27. Ernst G. Heart rate variability. London: Springer; 2014.

    Book  Google Scholar 

  28. Oka H. Heart rate variability and neurological disorders. Clinical assessment of the autonomic nervous system. Tokyo: Springer; 2017. p. 179–97.

    Book  Google Scholar 

  29. Goodman BB, David VD. Autonomic nervous system dysfunction in concussion. Neurology. 2013;80:P01-P265.

    Google Scholar 

  30. Baguley IJ, Heriseanu RE, Felmingham KL, Cameron ID. Dysautonomia and heart rate variability following severe traumatic brain injury. Brain Inj. 2006;20:437–44.

    Article  PubMed  Google Scholar 

  31. Garcia D. Robust smoothing of gridded data in one and higher dimensions with missing values. Comput Stat Data Anal. 2010;54:1167–78.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Chapter 14: Statistical description of data. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  33. Palacios VJPF, Fernández-Delgado J, Felix M, Barro SP. Time-frequency analysis of heart-rate variability. IEEE Eng Med Biol. 1997;16:119–26.

    Article  Google Scholar 

  34. Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng. 1985;32:230–6.

    Article  CAS  PubMed  Google Scholar 

  35. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84:482–92.

    Article  CAS  PubMed  Google Scholar 

  36. Delgado-Bonal AMA. Approximate entropy and sample entropy: a comprehensive tutorial. Entropy. 2019;21:541.

    Article  PubMed Central  Google Scholar 

  37. Henriques TRM, Castro TA, Antunes L, Costa-Santos LC. Nonlinear methods most applied to heart rate time series: a review. Entropy (Basel). 2020;22:309.

    Article  Google Scholar 

  38. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Melillo P, Izzo R, Orrico A, Scala P, Attanasio M, Mirra M, et al. Automatic prediction of cardiovascular and cerebrovascular events using heart rate variability analysis. PLoS ONE. 2015;10:e0118504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Parimi N, Hu PF, Mackenzie CF, Yang S, Bartlett ST, Scalea TM, et al. Automated continuous vital signs predict use of uncrossed matched blood and massive transfusion following trauma. J Trauma Acute Care Surg. 2016;80:897–906.

    Article  PubMed  Google Scholar 

  41. Melinosky C, Yang S, Hu P, Li H, Miller CHT, Khan I, et al. Continuous vital sign analysis to predict secondary neurological decline after traumatic brain injury. Front Neurol. 2018;9:761.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27:1829–34.

    Article  CAS  PubMed  Google Scholar 

  43. Czosnyka M, Miller C. Participants in the international multidisciplinary consensus conference on multimodality M. Monitoring of cerebral autoregulation. Neurocrit Care. 2014;21(Suppl 2):S95–102.

    Article  PubMed  Google Scholar 

  44. Baguley IJ, Perkes IE, Fernandez-Ortega JF, Rabinstein AA, Dolce G, Hendricks HT, et al. Paroxysmal sympathetic hyperactivity after acquired brain injury: consensus on conceptual definition, nomenclature, and diagnostic criteria. J Neurotrauma. 2014;31:1515–20.

    Article  PubMed  Google Scholar 

  45. Meyfroidt G, Baguley IJ, Menon DK. Paroxysmal sympathetic hyperactivity: the storm after acute brain injury. Lancet Neurol. 2017;16:721–9.

    Article  PubMed  Google Scholar 

  46. Marehbian J, Muehlschlegel S, Edlow BL, Hinson HE, Hwang DY. Medical management of the severe traumatic brain injury patient. Neurocrit Care. 2017;27:430–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Podell JE, Miller SS, Jaffa MN, Pajoumand M, Armahizer M, Chen H, et al. Admission features associated with paroxysmal sympathetic hyperactivity after traumatic brain injury: a case–control study. Crit Care Med. 2021;49:e989–1000.

    Article  CAS  PubMed  Google Scholar 

  48. Rabinstein AA. Paroxysmal sympathetic hyperactivity in the neurological intensive care unit. Neurol Res. 2007;29:680–2.

    Article  PubMed  Google Scholar 

  49. Samuel S, Lee M, Brown RJ, Choi HA, Baguley IJ. Incidence of paroxysmal sympathetic hyperactivity following traumatic brain injury using assessment tools. Brain Inj. 2018;32:1115–21.

    Article  PubMed  Google Scholar 

  50. van Eijck MM, Sprengers MOP, Oldenbeuving AW, de Vries J, Schoonman GG, Roks G. The use of the psh-am in patients with diffuse axonal injury and autonomic dysregulation: a cohort study and review. J Crit Care. 2019;49:110–7.

    Article  PubMed  Google Scholar 

  51. Lucca LF, De Tanti A, Cava F, Romoli A, Formisano R, Scarponi F, et al. Predicting outcome of acquired brain injury by the evolution of paroxysmal sympathetic hyperactivity signs. J Neurotrauma. 2021;38:1988–94.

    Article  PubMed  Google Scholar 

  52. Baguley IJ, Nott MT, Slewa-Younan S, Heriseanu RE, Perkes IE. Diagnosing dysautonomia after acute traumatic brain injury: evidence for overresponsiveness to afferent stimuli. Arch Phys Med Rehabil. 2009;90:580–6.

    Article  PubMed  Google Scholar 

  53. Hinson HE, Puybasset L, Weiss N, Perlbarg V, Benali H, Galanaud D, et al. Neuroanatomical basis of paroxysmal sympathetic hyperactivity: a diffusion tensor imaging analysis. Brain Inj. 2015;29:455–61.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kramer AA, Sebat F, Lissauer M. A review of early warning systems for prompt detection of patients at risk for clinical decline. J Trauma Acute Care Surg. 2019;87:S67–73.

    Article  PubMed  Google Scholar 

  55. Datta DPM, Chiu J, Watson GS, Bywater JP, Barnes L, et al. Improving classification through weak supervision in context-specific conversational agent development for teacher education. http://arxiv.org/abs/2010.127102020.

  56. Ratner A, Bach SH, Ehrenberg H, Fries J, Wu S, Re C. Snorkel: rapid training data creation with weak supervision. Proc VLDB Endow. 2017;11:269–82.

    Article  Google Scholar 

  57. Liu M. (2019) Weak supervision and active learning for natural language processing (PhD Thesis); Monash University.

  58. Settles, B. (2009). Active Learning Literature Survey.

  59. Jalali LJR. Event mining for explanatory modeling. New York: ACM; 2021.

    Book  Google Scholar 

  60. Chalapathy R, Chawla S. Deep learning for anomaly detection: a survey; 2019. http://arxiv.org/abs/1901.03407

  61. Gelatti GJ, Carvalho A, Rodrigues P. Learning representations from healthcare time series data for unsupervised anomaly detection. In: 2019 IEEE international conference on big data and smart computing (BigComp); 2019.

  62. Gelatti GJ, Carvalho A, Rodrigues P. Learning representations from healthcare time series data for unsupervised anomaly detection. In: 2019 IEEE international conference on big data and smart computing (BigComp).

  63. Pereira U, Brunel N. Unsupervised learning of persistent and sequential activity. Front Comput Neurosci. 2019;13:97.

    Article  PubMed  Google Scholar 

  64. Guillame-Bert M, Dubrawski A. Classification of time sequences using graphs of temporal constraints. J Mach Learn Res. 2017;1–34.

  65. Wang Z, Yan W, Oates T. Time series classification from scratch with deep neural networks: a strong baseline. In: 2017 international joint conference on neural networks (IJCNN); 2017.

  66. Penfield W. Epilepsy and the functional anatomy of the human brain. London: J & A Churchill Ltd; 1954. p. 412–37.

    Google Scholar 

  67. Lv LQ, Hou LJ, Yu MK, Qi XQ, Chen HR, Chen JX, et al. Prognostic influence and magnetic resonance imaging findings in paroxysmal sympathetic hyperactivity after severe traumatic brain injury. J Neurotrauma. 2010;27:1945–50.

    Article  PubMed  Google Scholar 

  68. Podell J, Parikh G, Miller S, Tripathi H, Zhuo J, Roys S, Schwartzbauer G, Gullapalli R, Badjatia N. Acute traumatic brain injury magnetic resonance imaging lesions associated with paroxysmal sympathetic hyperactivity diagnostic likelihood. In: 19th annual meeting of the neurocritical care society; 2021.

  69. Cowley RA. Resuscitaion and stabilization of major multiple trauma patients in a trauma center environment. Clin Med. 1976;83:16–22.

    Google Scholar 

  70. Lingsma HF, Roozenbeek B, Steyerberg EW, Murray GD, Maas AI. Early prognosis in traumatic brain injury: From prophecies to predictions. Lancet Neurol. 2010;9:543–54.

    Article  PubMed  Google Scholar 

  71. Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput. 2006;44:1031–51.

    Article  CAS  PubMed  Google Scholar 

  72. Goldstein B, Kempski MH, DeKing D, Cox C, DeLong DJ, Kelly MM, et al. Autonomic control of heart rate after brain injury in children. Crit Care Med. 1996;24:234–40.

    Article  CAS  PubMed  Google Scholar 

  73. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007;28:R1-39.

    Article  PubMed  Google Scholar 

  74. Lu S, Zhao H, Ju K, Shin K, Lee M, Shelley K, et al. Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information? J Clin Monit Comput. 2008;22:23–9.

    Article  PubMed  Google Scholar 

  75. Kahraman S, Dutton RP, Hu P, Stansbury L, Xiao Y, Stein DM, et al. Heart rate and pulse pressure variability are associated with intractable intracranial hypertension after severe traumatic brain injury. J Neurosurg Anesthesiol. 2010;22:296–302.

    Article  PubMed  Google Scholar 

  76. Mowery NT, Norris PR, Riordan W, Jenkins JM, Williams AE, Morris JA Jr. Cardiac uncoupling and heart rate variability are associated with intracranial hypertension and mortality: a study of 145 trauma patients with continuous monitoring. J Trauma. 2008;65:621–7.

    PubMed  Google Scholar 

  77. Winchell RJ, Hoyt DB. Analysis of heart-rate variability: a noninvasive predictor of death and poor outcome in patients with severe head injury. J Trauma. 1997;43:927–33.

    Article  CAS  PubMed  Google Scholar 

  78. Heinsius T, Bogousslavsky J, Van Melle G. Large infarcts in the middle cerebral artery territory. Etiology and outcome patterns. Neurology. 1998;50:341–50.

    Article  CAS  PubMed  Google Scholar 

  79. Thomalla G, Hartmann F, Juettler E, Singer OC, Lehnhardt FG, Kohrmann M, et al. Prediction of malignant middle cerebral artery infarction by magnetic resonance imaging within 6 hours of symptom onset: a prospective multicenter observational study. Ann Neurol. 2010;68:435–45.

    Article  PubMed  Google Scholar 

  80. Liebeskind DS, Juttler E, Shapovalov Y, Yegin A, Landen J, Jauch EC. Cerebral edema associated with large hemispheric infarction. Stroke. 2019;50:2619–25.

    Article  PubMed  Google Scholar 

  81. Hacke W, Schwab S, Horn M, Spranger M, De Georgia M, von Kummer R. ‘Malignant’ middle cerebral artery territory infarction: clinical course and prognostic signs. Arch Neurol. 1996;53:309–15.

    Article  CAS  PubMed  Google Scholar 

  82. Siegler JE, Boehme AK, Kumar AD, Gillette MA, Albright KC, Martin-Schild S. What change in the national institutes of health stroke scale should define neurologic deterioration in acute ischemic stroke? J Stroke Cerebrovasc Dis. 2013;22:675–82.

    Article  PubMed  Google Scholar 

  83. Seners P, Turc G, Tisserand M, Legrand L, Labeyrie MA, Calvet D, et al. Unexplained early neurological deterioration after intravenous thrombolysis: incidence, predictors, and associated factors. Stroke. 2014;45:2004–9.

    Article  CAS  PubMed  Google Scholar 

  84. Davalos A, Toni D, Iweins F, Lesaffre E, Bastianello S, Castillo J. Neurological deterioration in acute ischemic stroke: potential predictors and associated factors in the European cooperative acute stroke study (ECASS) I. Stroke. 1999;30:2631–6.

    Article  CAS  PubMed  Google Scholar 

  85. Arenillas JF, Rovira A, Molina CA, Grive E, Montaner J, Alvarez-Sabin J. Prediction of early neurological deterioration using diffusion- and perfusion-weighted imaging in hyperacute middle cerebral artery ischemic stroke. Stroke. 2002;33:2197–203.

    Article  PubMed  Google Scholar 

  86. Simard JM, Sahuquillo J, Sheth KN, Kahle KT, Walcott BP. Managing malignant cerebral infarction. Curr Treat Options Neurol. 2011;13:217–29.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Girot JB, Richard S, Gariel F, Sibon I, Labreuche J, Kyheng M, et al. Predictors of unexplained early neurological deterioration after endovascular treatment for acute ischemic stroke. Stroke. 2020;51:2943–50.

    Article  CAS  PubMed  Google Scholar 

  88. Chen CH, Huang PW, Tang SC, Shieh JS, Lai DM, Wu AY, et al. Complexity of heart rate variability can predict stroke-in-evolution in acute ischemic stroke patients. Sci Rep. 2015;5:17552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. He L, Wang J, Zhang L, Zhang X, Dong W, Yang H. Decreased fractal dimension of heart rate variability is associated with early neurological deterioration and recurrent ischemic stroke after acute ischemic stroke. J Neurol Sci. 2019;396:42–7.

    Article  PubMed  Google Scholar 

  90. Oppenheimer SM, Cechetto DF. Cardiac chronotropic organization of the rat insular cortex. Brain Res. 1990;533:66–72.

    Article  CAS  PubMed  Google Scholar 

  91. Oppenheimer SM, Wilson JX, Guiraudon C, Cechetto DF. Insular cortex stimulation produces lethal cardiac arrhythmias: a mechanism of sudden death? Brain Res. 1991;550:115–21.

    Article  CAS  PubMed  Google Scholar 

  92. Ruiz Vargas E, Soros P, Shoemaker JK, Hachinski V. Human cerebral circuitry related to cardiac control: a neuroimaging meta-analysis. Ann Neurol. 2016;79:709–16.

    Article  PubMed  Google Scholar 

  93. Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC. Cardiovascular effects of human insular cortex stimulation. Neurology. 1992;42:1727–32.

    Article  CAS  PubMed  Google Scholar 

  94. Chouchou F, Mauguiere F, Vallayer O, Catenoix H, Isnard J, Montavont A, et al. How the insula speaks to the heart: cardiac responses to insular stimulation in humans. Hum Brain Mapp. 2019;40:2611–22.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dinallo S, Waseem M. Cushing reflex. Treasure Island: Statpearls; 2021.

    Google Scholar 

  96. Pergakis MB, Miller S, Tripathi H, Hu P, Parikh G, Morris N, Chang W, Motta M, Chaturvedi S, Jindal G, Simard JM, Badjatia N. Association between heart rate variability and secondary brain injury in patients with large hemispheric infarct. In: Neurocritical care society 18th annual meeting; 2020.

  97. Rupp R, Biering-Sorensen F, Burns SP, Graves DE, Guest J, Jones L, et al. International standards for neurological classification of spinal cord injury: revised 2019. Top Spinal Cord Injury Rehabil. 2021;27:1–22.

    Article  Google Scholar 

  98. Menaker J, Kufera JA, Glaser J, Stein DM, Scalea TM. Admission Asia motor score predicting the need for tracheostomy after cervical spinal cord injury. J Trauma Acute Care Surg. 2013;75:629–34.

    Article  PubMed  Google Scholar 

  99. Biering-Sorensen F, Biering-Sorensen T, Liu N, Malmqvist L, Wecht JM, Krassioukov A. Alterations in cardiac autonomic control in spinal cord injury. Auton Neurosci. 2018;209:4–18.

    Article  PubMed  CAS  Google Scholar 

  100. Lucci VM, Inskip JA, McGrath MS, Ruiz I, Lee R, Kwon BK, et al. Longitudinal assessment of autonomic function during the acute phase of spinal cord injury: use of low-frequency blood pressure variability as a quantitative measure of autonomic function. J Neurotrauma. 2021;38:309–21.

    Article  PubMed  Google Scholar 

  101. Krassioukov A, Biering-Sorensen F, Donovan W, Kennelly M, Kirshblum S, Krogh K, et al. International standards to document remaining autonomic function after spinal cord injury. J Spinal Cord Med. 2012;35:201–10.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Inoue K, Miyake S, Kumashiro M, Ogata H, Yoshimura O. Power spectral analysis of heart rate variability in traumatic quadriplegic humans. Am J Physiol. 1990;258:H1722-1726.

    CAS  PubMed  Google Scholar 

  103. Johnston BW, Barrett-Jolley R, Krige A, Welters ID. Heart rate variability: measurement and emerging use in critical care medicine. J Intensive Care Soc. 2020;21:148–57.

    Article  PubMed  Google Scholar 

  104. Uryga A, Burzynska M, Tabakow P, Kasprowicz M, Budohoski KP, Kazimierska A, et al. Baroreflex sensitivity and heart rate variability are predictors of mortality in patients with aneurysmal subarachnoid haemorrhage. J Neurol Sci. 2018;394:112–9.

    Article  PubMed  Google Scholar 

  105. Yan L, Zhang S, Huang X, Tang Y, Wu J. Clinical study of autonomic dysfunction in patients with anti-nmda receptor encephalitis. Front Neurol. 2021;12:609750.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zaeem Z, Siddiqi ZA, Zochodne DW. Autonomic involvement in Guillain-Barre syndrome: an update. Clin Auton Res. 2019;29:289–99.

    Article  PubMed  Google Scholar 

  107. Oduah MT, Iwanowski P. Cardiovascular complications of epileptic seizures. Epilepsy Behav. 2020;111:107185.

    Article  PubMed  Google Scholar 

Download references

Funding

NB, PH, and SY received funding support from United States Air Force (USAF) (FA8650-18-2-6H18). NB received funding from National Institute of Neurological Disorders and Stroke/National Institutes of Health (NINDS/NIH) (NS10505503).

Author information

Authors and Affiliations

Authors

Contributions

NB, JP, MP, PH, and SY: concept and design of the study, analysis of data, writing of the article. HC and LC: analysis of data and critical revision. RF: data collection, administrative support, and critical revision. CM and GP: analysis of data, important intellectual content, and critical revision. The final manuscript was approved by all authors.

Corresponding author

Correspondence to Neeraj Badjatia.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical Approval/Informed Consent

This is a review article and does not contain new data necessitating ethical approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podell, J., Pergakis, M., Yang, S. et al. Leveraging Continuous Vital Sign Measurements for Real-Time Assessment of Autonomic Nervous System Dysfunction After Brain Injury: A Narrative Review of Current and Future Applications. Neurocrit Care 37 (Suppl 2), 206–219 (2022). https://doi.org/10.1007/s12028-022-01491-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-022-01491-6

Keywords

Navigation