Skip to main content

Heart Rate Variability and Neurological Disorders

  • Chapter
  • First Online:
Clinical Assessment of the Autonomic Nervous System

Abstract

Heart rate variability (HRV) can generally be used to evaluate cardiac autonomic function in patients with neurological disorders. The low-frequency (LF) component of the RR interval on spectral analysis is influenced by both the sympathetic and parasympathetic nervous systems, whereas the high-frequency (HF) component of the RR interval mainly reflects cardiovagal tone. The ratio of the power at LF to that at HF (LF/HF) has been suggested to be an indicator of the sympathetic nervous system. LF and LF/HF were reduced even in early-stage de novo Parkinson’s disease (PD) without orthostatic hypotension, despite no significant difference in HF. This finding indicated that sympathetic nerve dysfunction in the sinus node occurs in patients who have early-stage PD without parasympathetic nerve dysfunction. Cardiovascular function as evaluated by HRV was also associated with olfactory impairment. Reduced LF and HF components were found in multiple system atrophy. It seems that the impairment was more severe than that in PD. Although autonomic dysfunction in patients with progressive supranuclear palsy (PSP) has been controversial in previous studies, no clinically significant autonomic dysfunction was found in PSP patients who underwent evaluation of HRV. In dementias, the evaluation of HRV revealed reduced cardiac vagal denervation in dementia with Lewy bodies (DLB) and Parkinson’s disease with dementia (PDD) and partial impairment of sympathovagal balance and abnormal postural heart modulation in Alzheimer disease (AD). It is thought that patients with ischemic stroke have depressed parasympathetic activity in the acute or chronic stage, while the impairment of sympathetic activity remains conflicting. HRV revealed that both sympathetic and parasympathetic functions were significantly decreased in patients with early-stage familial amyloid polyneuropathy (FAP), while sympathetic activity was more decreased in patients with advanced-stage FAP. Cardiac autonomic neuropathy (CAN) was evaluated by spectral analyses of the RR interval in diabetes mellitus. Parasympathetic dysfunction was apparently present in patients with mild autonomic dysfunction, while sympathetic dysfunction was observed in patients with moderate or severe autonomic neuropathy. A few studies that used a 24-hour (24-h) heart rate power spectrum to evaluate autonomic dysfunction in Guillain-Barré syndrome have been reported. The HF component was significantly decreased at the height of the disease, and the LF/HF ratio increased as compared with the follow-up value after 1 year. Spectral analysis of HRV showed significantly reduced LF and HF components, and LF/HF was significantly greater in ALS patients than in healthy subjects. HRV is a useful marker of cardiovascular autonomic dysfunction in neurological disorders because it can be determined simply and noninvasively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986;59:178–93.

    Article  CAS  PubMed  Google Scholar 

  2. Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D, Gordon D, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 1985;248:H151–3.

    CAS  PubMed  Google Scholar 

  3. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84:482–92.

    Article  CAS  PubMed  Google Scholar 

  4. Task Force of the European Society of Cardiology, North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93:1043–65.

    Article  Google Scholar 

  5. Hayano J, Taylor JA, Yamada A, Mukai S, Hori R, Asakawa T, et al. Continuous assessment of hemodynamic control by complex demodulation of cardiovascular variability. Am J Physiol. 1993;264:H1229–38.

    CAS  PubMed  Google Scholar 

  6. Cacioppo JT, Berntson GG, Binkley PF, Quigley KS, Uchino BN, Fieldstone A. Autonomic cardiac control. II. Noninvasive indices and basal response as revealed by autonomic blockades. Psychophysiology. 1994;31:586–98.

    Article  CAS  PubMed  Google Scholar 

  7. Rajput AH, Offord KP, Beard CM, Kurland LT. Epidemiology of parkinsonism: incidence, classification, and mortality. Ann Neurol. 1984;16:278–82.

    Article  CAS  PubMed  Google Scholar 

  8. Goldstein DS. Dysautonomia in Parkinson’s disease: neurocardiological abnormalities. Lancet Neurol. 2003;2:669–76.

    Article  PubMed  Google Scholar 

  9. Bonuccelli U, Lucetti C, Del Dotto P, Ceravolo R, Gambaccini G, Bernardini S, et al. Orthostatic hypotension in de novo Parkinson disease. Arch Neurol. 2003;60:1400–4.

    Article  PubMed  Google Scholar 

  10. Jost WH. Autonomic dysfunctions in idiopathic Parkinson s disease. J Neurol. 2003;250 Suppl 1:I28–30.

    Article  PubMed  Google Scholar 

  11. Perani D, Bressi S, Testa D, Grassi F, Cortelli P, Gentrini S, et al. Clinical/metabolic correlations in multiple system atrophy. A fludeoxyglucose F 18 positron emission tomographic study. Arch Neurol. 1995;52:179–85.

    Article  CAS  PubMed  Google Scholar 

  12. Colosimo C, Albanese A, Hughes AJ, de Bruin VM, Lees AJ. Some specific clinical features differentiate multiple system atrophy (striatonigral variety) from Parkinson’s disease. Arch Neurol. 1995;52:294–8.

    Article  CAS  PubMed  Google Scholar 

  13. Quinn N. Multiple system atrophy: the nature of the beast. J Neurol Neurosurg Psychiatry. 1989;52(Suppl):78–89.

    Article  PubMed Central  Google Scholar 

  14. Sandroni P, Ahlskog JE, Fealey RD, Low PA. Autonomic involvement in extrapyramidal and cerebellar disorders. Clin Auton Res. 1991;1:147–55.

    Article  CAS  PubMed  Google Scholar 

  15. Magalhaes M, Wenning GK, Daniel SE, Quinn NP. Autonomic dysfunction in pathologically confirmed multiple system atrophy and idiopathic Parkinson’s disease – a retrospective comparison. Acta Neurol Scand. 1995;91:98–102.

    Article  CAS  PubMed  Google Scholar 

  16. Gilman S. Multiple system atrophy. In: Jankovic J, Tolosa E, editors. Parkinson’s disease and movement disorders. 3rd ed. Baltimore: Williams & Wilkins; 1998. p. 245–62.

    Google Scholar 

  17. Micieli G, Martignoni E, Cavallini A, Sandrini G, Nappi G. Postprandial and orthostatic hypotension in Parkinson’s disease. Neurology. 1987;37:386–93.

    Article  CAS  PubMed  Google Scholar 

  18. Seared JM, Raï S, Lapeyre-Mestre M, Brefel C, Rascol O, Rascol A, et al. Prevalence of orthostatic hypotension in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;63:584–9.

    Article  Google Scholar 

  19. Hillen ME, Wagner ML, Sage JI. “Subclinical” orthostatic hypotension is associated with dizziness in elderly patients with Parkinson disease. Arch Phys Med Rehabil. 1996;77:710–2.

    Article  CAS  PubMed  Google Scholar 

  20. Goldstein DS, Pechnik S, Holmes C, Eldadah B, Sharabi Y. Association between supine hypertension and orthostatic hypotension in autonomic failure. Hypertension. 2003;42:136–42.

    Article  CAS  PubMed  Google Scholar 

  21. Orimo S, Ozawa E, Oka T, Nakade S, Tsuchiya K, Yoshimoto M, et al. Different histopathology accounting for a decrease in myocardial MIBG uptake in PD and MSA. Neurology. 2001;57:1140–1.

    Article  CAS  PubMed  Google Scholar 

  22. Haensch CA, Lerch H, Jörg J, Isenmann S. Cardiac denervation occurs independent of orthostatic hypotension and impaired heart rate variability in Parkinson’s disease. Parkinsonism Relat Disord. 2009;15:134–7.

    Article  PubMed  Google Scholar 

  23. Sachs C, Berglund B, Kaijser L. Autonomic cardiovascular responses in parkinsonism: effect of levodopa with dopa-decarboxylase inhibition. Acta Neurol Scand. 1985;71:37–42.

    Article  CAS  PubMed  Google Scholar 

  24. Ludin SM, Steiger UH, Ludin HP. Autonomic disturbances and cardiovascular reflexes in idiopathic Parkinson’s disease. J Neurol. 1987;235:10–5.

    Article  CAS  PubMed  Google Scholar 

  25. Camerlingo M, Aillon C, Bottacchi E, Gambaro P, D’Alessandro G. Parasympathetic assessment in Parkinson’s disease. Adv Neurol. 1987;45:267–9.

    CAS  PubMed  Google Scholar 

  26. Benarroch EE, Schmeichel AM, Parisi JE. Preservation of branchimotor neurons of the nucleus ambiguus in multiple system atrophy. Neurology. 2003;60:115–7.

    Article  PubMed  Google Scholar 

  27. Weimer LH. Autonomic testing: common techniques and clinical applications. Neurologist. 2010;16:215–22.

    Article  PubMed  Google Scholar 

  28. Ewing DJ. Cardiovascular reflex and autonomic neuropathy. Clin Sci Mol Med. 1978;55:321–7.

    CAS  PubMed  Google Scholar 

  29. Task force of the European Society of Cardiology, North American Society of pacing and Electrophysiology. Heart rate variability. Standards measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81.

    Article  Google Scholar 

  30. Oka H, Toyoda C, Yogo M, Mochio S. Cardiovascular dysautonomia in de novo Parkinson’s disease without orthostatic hypotension. Eur J Neurol. 2011;18:286–92.

    Article  CAS  PubMed  Google Scholar 

  31. Sorensen GL, Mehlsen J, Jennum P. Reduced sympathetic activity in idiopathic rapid-eye-movement sleep behavior disorder and Parkinson’s disease. Auton Neurosci. 2013;179:138–41.

    Article  PubMed  Google Scholar 

  32. Mesec A, Sega S, Kiauta T. The influence of the type, duration, severity and levodopa treatment of Parkinson’s disease on cardiovascular autonomic responses. Clin Auton Res. 1993;3:339–44.

    Article  CAS  PubMed  Google Scholar 

  33. Korchounov A, Kessler KR, Yakhno NN, Damulin IV, Schipper HI. Determinants of autonomic dysfunction in idiopathic Parkinson’s disease. J Neurol. 2005;252:1530–6.

    Article  PubMed  Google Scholar 

  34. Haapaniemi TH, Pursiainen V, Korpelainen JT, Huikuri HV, Sotaniemi KA, Myllylä VV. Ambulatory ECG and analysis of heart rate variability in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2001;70:305–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Niwa F, Kuriyama N, Nakagawa M, Imanishi J. Circadian rhythm of rest activity and autonomic nervous system activity at different stages in Parkinson’s disease. Auton Neurosci. 2011;165:195–200.

    Article  PubMed  Google Scholar 

  36. Covassin N, Neikrug AB, Liu L, Maglione J, Natarajan L, Corey-Bloom J, et al. Relationships between clinical characteristics and nocturnal cardiac autonomic activity in Parkinson’s disease. Auton Neurosci. 2012;171:85–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu KD, Shan DE, Kuo TB, Yang CC. The effects of bilateral stimulation of the subthalamic nucleus on heart rate variability in patients with Parkinson’s disease. J Neurol. 2013;260:1714–23.

    Article  PubMed  Google Scholar 

  38. Oka H, Toyoda C, Yogo M, Mochio S. Olfactory dysfunction and cardiovascular dysautonomia in Parkinson’s disease. J Neurol. 2010;257:969–76.

    Article  PubMed  Google Scholar 

  39. Kang P, Kloke J, Jain S. Olfactory dysfunction and parasympathetic dysautonomia in Parkinson’s disease. Clin Auton Res. 2012;22:161–6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Albanese A, Colosimo C, Bentivoglio AR, Fenici R, Melillo G, Tonali P. Multiple system atrophy presenting as parkinsonism: clinical features and diagnostic criteria. J Neurol Neurosurg Psychiatry. 1995;59:144–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oka H, Mochio S, Katayama K, Inoue K. Autonomic dysfunction in multiple system atrophy by spectral analyses of RR interval and systolic blood pressure. Auton Nerv Syst (Tokyo). 1997;34:322–6.

    Google Scholar 

  42. Brisinda D, Sorbo AR, Di Giacopo R, Venuti A, Bentivoglio AR, Fenici R. Cardiovascular autonomic nervous system evaluation in Parkinson disease and multiple system atrophy. J Neurol Sci. 2014;336:197–202.

    Article  PubMed  Google Scholar 

  43. Kimber J, Mathias CJ, Lees AJ, Bleasdale-Barr K, Chang HS, Churchyard A, et al. Physiological, pharmacological and neurohormonal assessment of autonomic function in progressive supranuclear palsy. Brain. 2000;123:1422–30.

    Article  PubMed  Google Scholar 

  44. Kikkawa Y, Asahina M, Suzuki A, Hattori T. Cutaneous sympathetic function and cardiovascular function in patients with progressive supranuclear palsy and Parkinson’s disease. Parkinsonism Relat Disord. 2003;10:101–6.

    Article  PubMed  Google Scholar 

  45. Deguchi K, Sasaki I, Tsukaguchi M, Kamoda M, Touge T, Takeuchi H, et al. Abnormalities of rate-corrected QT intervals in Parkinson’s disease-a comparison with multiple system atrophy and progressive supranuclear palsy. J Neurol Sci. 2002;199:31–7.

    Article  PubMed  Google Scholar 

  46. Brefel-Courbon C, Thalamas C, Rascol O, Montastruc JL, Senard JM. Lack of autonomic nervous dysfunction in progressive supranuclear palsy, a study of blood pressure variability. Clin Auton Res. 2000;10:309–12.

    Article  CAS  PubMed  Google Scholar 

  47. Gutrecht JA. Autonomic cardiovascular reflexes in progressive supranuclear palsy. J Auton Nerv Syst. 1992;39:29–35.

    Article  CAS  PubMed  Google Scholar 

  48. Sasaki I, Takeuchi H, Deguchi K, Yamada A, Nishioka M, Sakamoto H. Autonomic nervous function in progressive supranuclear palsy–comparison with Parkinson’s disease and healthy controls. Clin Neurol (Rinsho Shinkeigaku). 1994;34:975–9.

    CAS  Google Scholar 

  49. Wenning GK, Scherfler C, Granata R, Bösch S, Verny M, Chaudhuri KR, et al. Time course of symptomatic orthostatic hypotension and urinary incontinence in patients with postmortem confirmed parkinsonian syndromes: a clinicopathological study. J Neurol Neurosurg Psychiatry. 1999;67:620–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Van Dijk JG, Haan J, Koenderink M, Roos RA. Autonomic nervous function in progressive supranuclear palsy. Arch Neurol. 1991;48:1083–4.

    Article  PubMed  Google Scholar 

  51. Holmberg B, Kallio M, Johnels B, Elam M. Cardiovascular reflex testing contributes to clinical evaluation and differential diagnosis of parkinsonian syndromes. Mov Disord. 2001;16:217–5.

    Article  CAS  PubMed  Google Scholar 

  52. Allan LM, Ballard CG, Allen J, Murray A, Davidson AW, McKeith IG, et al. Autonomic dysfunction in dementia. J Neurol Neurosurg Psychiatry. 2007;78:671–7.13.

    Article  CAS  PubMed  Google Scholar 

  53. Akaogi Y, Asahina M, Yamanaka Y, Koyama Y, Hattori T. Sudomotor, skin vasomotor and cardiovascular reflexes in 3 clinical forms of Lewy body disease. Neurology. 2009;73:59–65.

    Article  CAS  PubMed  Google Scholar 

  54. Ewing DJ, Borsey DQ, Bellavere F, Clarke BF. Cardiac autonomic neuropathy in diabetes: comparison of measures of R–R interval variation. Diabetologia. 1981;21:18–24.

    Article  CAS  PubMed  Google Scholar 

  55. Ewing DJ, Clarke BF. Diagnosis and management of diabetic autonomic neuropathy. Br Med J (Clin Res Ed). 1982;285(6346):916–8.

    Article  CAS  Google Scholar 

  56. Ewing DJ, Martyn CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care. 1985;8:491–8.

    Article  CAS  PubMed  Google Scholar 

  57. Idiaquez J, Sandoval E, Seguel A. Association between neuropsychiatric and autonomic dysfunction in Alzheimer’s disease. Clin Auton Res. 2002;12:43–6.

    Article  PubMed  Google Scholar 

  58. De Vilhena Toledo MA, Junqueira Jr LF. Cardiac sympathovagal modulation evaluated by short-term heart interval variability is subtly impaired in Alzheimer’s disease. Geriatr Gerontol Int. 2008;8:109–18.

    Article  PubMed  Google Scholar 

  59. Toledo MA, Junqueira Jr LF. Cardiac autonomic modulation and cognitive status in Alzheimer’s disease. Clin Auton Res. 2010;20:11–7.

    Article  PubMed  Google Scholar 

  60. Allan LM, Kerr SR, Ballard CG, Allen J, Murray A, McLaren AT, et al. Autonomic function assessed by heart rate variability is normal in Alzheimer’s disease and vascular dementia. Dement Geriatr Cogn Disord. 2005;19:140–4.

    Article  CAS  PubMed  Google Scholar 

  61. Dutsch M, Burger M, Dorfler C, Schwab S, Hilz MJ. Cardiovascular autonomic function in post stroke patients. Neurology. 2007;69:2249–55.

    Article  CAS  PubMed  Google Scholar 

  62. McLaren A, Kerr S, Allan L, Steen IN, Ballard C, Allen J, et al. Autonomic function is impaired in elderly stroke survivors. Stroke. 2005;36:1026–30.

    Article  PubMed  Google Scholar 

  63. Korpelainen JT, Sotaniemi KA, Huikuri HV, Myllya VV. Abnormal heart rate variability as a manifestation of autonomic dysfunction in hemispheric brain infarction. Stroke. 1996;27:2059–63.

    Article  CAS  PubMed  Google Scholar 

  64. Tokgozoglu SL, Batur MK, Top uoglu MA, Saribas O, Kes S, Oto A. Effects of stroke localization on cardiac autonomic balance and sudden death. Stroke. 1999;30:1307–11.

    Article  CAS  PubMed  Google Scholar 

  65. Naver HK, Blomstrand C, Wallin BG. Reduced heart rate variability after right-sided stroke. Stroke. 1996;27:247–51.

    Article  CAS  PubMed  Google Scholar 

  66. Barron SA, Rogovski Z, Hemli J. Autonomic consequences of cerebral hemisphere infarction. Stroke. 1994;25:113–6.

    Article  CAS  PubMed  Google Scholar 

  67. Korpelainen JT, Huikuri HV, Sotaniemi KA, Myllylä VV. Abnormal heart rate variability reflecting autonomic dysfunction in brainstem infarction. Acta Neurol Scand. 1996;94:337–42.

    Article  CAS  PubMed  Google Scholar 

  68. Colivicchi F, Bassi A, Santini M, Caltagirone C. Cardiac autonomic derangement and arrhythmias in right-sided stroke with insular involvement. Stroke. 2004;35:2094–8.

    Article  PubMed  Google Scholar 

  69. Robinson TG, Dawson SL, Eames PJ, Panerai RB, Potter JF. Cardiac baroreceptor sensitivity predicts long-term outcome after acute ischemic stroke. Stroke. 2003;34:705–12.

    Article  PubMed  Google Scholar 

  70. Xiong L, Leung HH, Chen XY, Han JH, Leung TW, Soo YO, et al. Comprehensive assessment for autonomic dysfunction in different phases after ischemic stroke. Int J Stroke. 2013;8:645–51.

    Article  PubMed  Google Scholar 

  71. Chen PL, Kuo TB, Yang CC. Parasympathetic activity correlates with early outcome in patients with large artery atherosclerotic stroke. J Neurol Sci. 2012;314:57–61.

    Article  PubMed  Google Scholar 

  72. Kwon DY, Lim HE, Park MH, Oh K, Yu SW, Park KW, et al. Carotid atherosclerosis and heart rate variability in ischemic stroke. Clin Auton Res. 2008;18:355–7.

    Article  PubMed  Google Scholar 

  73. Xiong L, Leung HW, Chen XY, Leung WH, Soo OY, Wong KS. Autonomic dysfunction in different subtypes of post-acute ischemic stroke. J Neurol Sci. 2014;337:141–6.

    Article  CAS  PubMed  Google Scholar 

  74. Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC. Cardiovascular effects of human insular cortex stimulation. Neurology. 1992;42:1727–32. 44.

    Article  CAS  PubMed  Google Scholar 

  75. Kedem G, Martin WM. Left-insular cortex lesions perturb cardiac autonomic tone in humans. Clin Auton Res. 1996;6:131–40.

    Article  PubMed  Google Scholar 

  76. Cechetto DF, Saper CB. Role of the cerebral cortex in autonomic function. In: Loewy AD, Spyer KM, editors. Central regulation of autonomic functions. New York: Oxford University Press; 1990. p. 208–23.

    Google Scholar 

  77. Lane RD, Wallace JD, Petrosky PP, Schwartz GE, Gradman AH. Supraventricular tachycardia in patients with right hemisphere strokes. Stroke. 1992;23:362–6.

    Article  CAS  PubMed  Google Scholar 

  78. Vingerhoets F, Bogousslavsky J, Regli F, van Malle G. Atrial fibrillation after stroke. Stroke. 1993;24:20–6.

    Article  Google Scholar 

  79. Planté-Bordeneuve V, Said G. Familial amyloid polyneuropathy. Lancet Neurol. 2011;10:1086–97.

    Article  PubMed  CAS  Google Scholar 

  80. Kinoshita O, Hongo M, Saikawa Y, Katsuyama T, Tanaka M, Takeda M, et al. Heart rate variability in patients with familial amyloid polyneuropathy. PACE. 1997;20:2949–53.

    Article  CAS  PubMed  Google Scholar 

  81. Maser RE, Lenhard MJ. Cardiovascular autonomic neuropathy due to diabetes mellitus: clinical manifestations, consequences, and treatment. J Clin Endocrinol Metab. 2005;90:5896–903.

    Article  CAS  PubMed  Google Scholar 

  82. Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol. 2012;11:521–34.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Oka H, Mochio S, Sato K, Sato H, Katayama K, Watanabe S, et al. Spectral analyses of R-R interval and systolic blood pressure in diabetic autonomic neuropathy. J Auton Nerv Syst. 1995;52:203–11.

    Article  CAS  PubMed  Google Scholar 

  84. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26:1553–79.

    Article  PubMed  Google Scholar 

  85. Maser RE, Mitchell BD, Vinik AI, Freeman R. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care. 2003;26:1895–901.

    Article  PubMed  Google Scholar 

  86. Ziegler D, Zentai CP, Perz S, Rathmann W, Haastert B, Döring A, et al. Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population. Diabetes Care. 2008;31:556–61.

    Article  PubMed  Google Scholar 

  87. Tahrani AA, Dubb K, Raymond NT, Begum S, Altaf QA, Sadiqi H, et al. Cardiac autonomic neuropathy predicts renal function decline in patients with type 2 diabetes: a cohort study. Diabetologia. 2014;57:1249–56.

    Article  CAS  PubMed  Google Scholar 

  88. Hartung HP, Pollard JD, Harvey GK, Toyka KV. Immunopathogenesis and treatment of the Guillain-Barré syndrome – part I. Muscle Nerve. 1995;18:137–53.

    Article  CAS  PubMed  Google Scholar 

  89. Flachenecker P, Hartung HP, Reiners K. Power spectrum analysis of heart rate variability in Guillain-Barre syndrome. A longitudinal ‘study. Brain. 1997;120:1885–94.

    Article  PubMed  Google Scholar 

  90. Flachenecker P, Reiners K. Twenty-four-hour heart rate power spectrum for evaluation of autonomic dysfunction in Guillain-Barré syndrome. J Neurol Sci. 1999;165:144–53.

    Article  CAS  PubMed  Google Scholar 

  91. Flachenecker P, Lem K, Müllges W, Reiners K. Detection of serious bradyarrhythmias in Guillain-Barré syndrome: sensitivity and specificity of the 24-hour heart rate power spectrum. Clin Auton Res. 2000;10:185–91.

    Article  CAS  PubMed  Google Scholar 

  92. Shimizu T, Hayashi H, Hayashi M, Kato S, Tanabe H. Hyposensitivity of peripheral alpha-receptors in respiratory-dependent amyotrophic lateral sclerosis assessed by intravenous norepinephrine infusion. Clin Auton Res. 1995;5:165–9.

    Article  CAS  PubMed  Google Scholar 

  93. Shindo K, Tsunoda S, Shiozawa Z. Microneurographic analysis of muscle sympathetic nerve activity in amyotrophic lateral sclerosis. Clin Auton Res. 1993;3:131–5.

    Article  CAS  PubMed  Google Scholar 

  94. Shindo K, Tsunoda S, Shiozawa Z. Increased sympathetic outflow to muscles in patients with amyotrophic lateral sclerosis: a comparison with other neuromuscular patients. J Neurol Sci. 1995;134:57–60.

    Article  CAS  PubMed  Google Scholar 

  95. Karlsborg M, Andersen EB, Wiinberg N, Gredal O, Jorgensen L, Mehlsen J. Sympathetic dysfunction of central origin in patients with ALS. Eur J Neurol. 2003;10:229–34.

    Article  CAS  PubMed  Google Scholar 

  96. Hecht MJ, Bron CM, Mittelhamm F, Werner D, Heuss D, Neundorfer B, et al. Increased hypoxic blood pressure response in patients with amyotrophic lateral sclerosis. J Neurol Sci. 2003;213:47–53.

    Article  PubMed  Google Scholar 

  97. Baltadzhieva R, Gurevich T, Korczyn AD. Autonomic impairment in amyotrophic lateral sclerosis. Curr Opin Neurol. 2005;18:487–93.

    Article  PubMed  Google Scholar 

  98. Sachs C, Conradi S, Kaijser L. Autonomic function in amyotrophic lateral sclerosis: a study of cardiovascular responses. Acta Neurol Scand. 1985;71:373–8.

    Article  CAS  PubMed  Google Scholar 

  99. Oey PL, Vos PE, Wieneke GH, Wokke JH, Blankestijn PJ, Karemaker JM. Subtle involvement of the sympathetic nervous system in amyotrophic lateral sclerosis. Muscle Nerve. 2002;25:402–8.

    Article  PubMed  Google Scholar 

  100. Kennedy P, Duchen L. A quantitative study of intermedio-lateral column cells in amyotrophic lateral sclerosis and Shy-Drager. J Neurol Neurosurg Psychiatry. 1985;48:1103–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pisano F, Miscio G, Mazzuero G, Lanfranchi P, Colombo R, Pinelli P. Decreased heart rate variability in amyotrophic lateral sclerosis. Muscle Nerve. 1995;18:1225–31.

    Article  CAS  PubMed  Google Scholar 

  102. Merico A, Cavinato M. Autonomic dysfunction in the early stage of ALS with bulbar involvement. Amyotroph Lateral Scler. 2011;12:363–7.

    Article  PubMed  Google Scholar 

  103. Pavlovic S, Stevic Z, Milovanovic B, Milicic B, Rakocevic-Stojanovic V, Lavrnic D, et al. Impairment of cardiac autonomic control in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2010;11:272–6.

    Article  PubMed  Google Scholar 

  104. Linden D, Diehl RR, Berlit P. Reduced baroreflex sensitivity and cardiovascular regulation in amyotrophic lateral sclerosis. Electroencephalogr Clin Neurophysiol. 1998;109:387–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisayoshi Oka M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Oka, H. (2017). Heart Rate Variability and Neurological Disorders. In: Iwase, S., Hayano, J., Orimo, S. (eds) Clinical Assessment of the Autonomic Nervous System. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56012-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56012-8_11

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56010-4

  • Online ISBN: 978-4-431-56012-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics