Skip to main content

TRP Channels of Islets

  • Chapter
  • First Online:
Transient Receptor Potential Channels

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 704))

Abstract

In the normal human body pancreatic β-cells spend most of the time in a READY mode rather than in an OFF mode. When in the READY mode, normal β-cells can be easily SWITCHED ON by a variety of apparently trivial stimuli. In the READY mode β-cells are highly excitable because of their high input resistance. A variety of small depolarizing currents mediated through a variety of cation channels triggered by a variety of chemical and physical stimuli can SWITCH ON the cells. Several polymodal ion channels belonging to the transient receptor potential (TRP) family may mediate the depolarizing currents necessary to shift the β-cells from the READY mode to the ON mode. Thanks to the TRP channels, we now know that the Ca2+-activated monovalent cation selective channel described by Sturgess et al. in 1986 (FEBS Lett 208:397–400) is TRPM4, and that the H2O2-activate non-selective cation channel described by Herson and Ashford, in 1997 (J Physiol 501:59–66) is TRPM2. Glucose metabolism generates heat which appears to be a second messenger sensed by the temperature-sensitive TRP channels like the TRPM2 channel. Global knock-out of TRPM5 channel impairs insulin secretion in mice. Other TRPs that may be involved in the regulation of β-cell function include TRPC1, TRPC4, TRPM3, TRPV2 and TRPV4. Future research needs to be intensified to study the molecular regulation of the TRP channels of islets, and to elucidate their roles in the regulation of human β-cell function, in the context of pathogenesis of human islet failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newsholme P, Gaudel C, McClenaghan NH (2010) Nutrient regulation of insulin secretion and beta-cell functional integrity. Adv Exp Med Biol 654:91–114

    Article  CAS  PubMed  Google Scholar 

  2. Islam MS (2010) Calcium signaling in the islets. Adv Exp Med Biol 654:235–259

    Article  CAS  PubMed  Google Scholar 

  3. Drews G, Krippeit-Drews P, Dufer M (2010) Electrophysiology of islet cells. Adv Exp Med Biol 654:115–163

    Article  CAS  PubMed  Google Scholar 

  4. Clark R, Proks P (2010) ATP-sensitive potassium channels in health and disease. Adv Exp Med Biol 654:165–192

    Article  CAS  PubMed  Google Scholar 

  5. Sakura H, Ashcroft FM (1997) Identification of four trp1 gene variants murine pancreatic beta-cells. Diabetologia 40:528–532

    Article  CAS  PubMed  Google Scholar 

  6. Roe MW, Worley JF III, Qian F, Tamarina N, Mittal AA, Dralyuk F, Blair NT, Mertz RJ, Philipson LH, Dukes ID (1998) Characterization of a Ca2+ release-activated nonselective cation current regulating membrane potential and [Ca2+]i oscillations in transgenically derived beta-cells. J BiolChem 273:10402–10410

    CAS  Google Scholar 

  7. Li F, Zhang ZM (2009) Comparative identification of Ca2+ channel expression in INS-1 and rat pancreatic beta cells. World J Gastroenterol 15:3046–3050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Qian F, Huang P, Ma L, Kuznetsov A, Tamarina N, Philipson LH (2002) TRP genes: candidates for nonselective cation channels and store-operated channels in insulin-secreting cells. Diabetes 51:S183–S189

    Article  CAS  PubMed  Google Scholar 

  9. Bari MR, Akbar S, Eweida M, Kuhn FJ, Gustafsson AJ, Lückhoff A, Islam MS (2009) H2O2-induced Ca2+ influx and its inhibition by N-(p-amylcinnamoyl) anthranilic acid in the beta-cells: involvement of TRPM2 channels. J Cell Mol Med 13:3260–3267

    Article  PubMed  Google Scholar 

  10. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173

    Article  CAS  PubMed  Google Scholar 

  11. Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25:1804–1815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Inamura K, Sano Y, Mochizuki S, Yokoi H, Miyake A, Nozawa K, Kitada C, Matsushime H, Furuichi K (2003) Response to ADP-Ribose by Activation of TRPM2 in the CRI-G1 Insulinoma Cell Line. J Membr Biol 191:201–207

    Article  CAS  PubMed  Google Scholar 

  13. Du J, Xie J, Yue L (2009) Intracellular calcium activates TRPM2 and its alternative spliced isoforms. Proc Natl Acad Sci USA 106:7239–7244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R (2009) TRPM2 functions as a lysosomal Ca2+-release channel in beta cells. Sci Signal 2:ra23

    Article  PubMed Central  PubMed  Google Scholar 

  15. Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Dufer M, Lis A, Flockerzi V, Philipp SE, Oberwinkler J (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol 10:1421–1430

    Article  CAS  PubMed  Google Scholar 

  16. Cheng H, Beck A, Launay P, Gross SA, Stokes AJ, Kinet JP, Fleig A, Penner R (2007) TRPM4 controls insulin secretion in pancreatic beta-cells. Cell Calcium 41:51–61

    Article  CAS  PubMed  Google Scholar 

  17. Marigo V, Courville K, Hsu WH, Feng JM, Cheng H (2009) TRPM4 impacts on Ca2+ signals during agonist-induced insulin secretion in pancreatic beta-cells. Mol Cell Endocrinol 299:194–203

    Article  CAS  PubMed  Google Scholar 

  18. Prawitt D, Monteilh-Zoller MK, Brixel L, Spangenberg C, Zabel B, Fleig A, Penner R (2003) TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci USA 100:15166–15171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Colsoul B, Schraenen A, Lemaire K, Quintens R, Van Lommel L, Segal A, Owsianik G, Talavera K, Voets T, Margolskee RF, Kokrashvili Z, Gilon P, Nilius B, Schuit FC, Vennekens R (2010) Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5–/– mice. Proc Natl Acad Sci USA 107:5208–5213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Akiba Y, Kato S, Katsube KI, Nakamura M, Takeuchi K, Ishii H, Hibi T (2004) Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet beta cells modulates insulin secretion in rats. Biochem Biophys Res Commun 321:219–225

    Article  CAS  PubMed  Google Scholar 

  21. Hisanaga E, Nagasawa M, Ueki K, Kulkarni RN, Mori M, Kojima I (2009) Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic beta-cells. Diabetes 58:174–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Casas S, Novials A, Reimann F, Gomis R, Gribble FM (2008) Calcium elevation in mouse pancreatic beta cells evoked by extracellular human islet amyloid polypeptide involves activation of the mechanosensitive ion channel TRPV4. Diabetologia 51:2252–2262

    Article  CAS  PubMed  Google Scholar 

  23. Holz GG, Leech CA, Habener JF (1995) Activation of a cAMP-regulated Ca2+-signaling pathway in pancreatic beta-cells by the insulinotropic hormone glucagon-like peptide-1. J BiolChem 270:17749–17757

    CAS  Google Scholar 

  24. Leech CA, Habener JF (1998) A role for Ca2+-sensitive nonselective cation channels in regulating the membrane potential of pancreatic beta-cells. Diabetes 47:1066–1073

    Article  CAS  PubMed  Google Scholar 

  25. Sturgess NC, Hales CN, Ashford ML (1986) Inhibition of a calcium-activated, non-selective cation channel, in a rat insulinoma cell line, by adenine derivatives. FEBS Lett 208: 397–400

    Article  CAS  PubMed  Google Scholar 

  26. Nilius B, Prenen J, Voets T, Droogmans G (2004) Intracellular nucleotides and polyamines inhibit the Ca2+-activated cation channel TRPM4b. Pflugers Arch 448:70–75

    Article  CAS  PubMed  Google Scholar 

  27. Nilius B, Mahieu F, Karashima Y, Voets T (2007) Regulation of TRP channels: a voltage-lipid connection. Biochem Soc Trans 35:105–108

    Article  CAS  PubMed  Google Scholar 

  28. Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE, Schmitz F, Weissgerber P, Nilius B, Flockerzi V, Freichel M (2007) Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat Immunol 8:312–320

    Article  CAS  PubMed  Google Scholar 

  29. Demion M, Bois P, Launay P, Guinamard R (2007) TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc Res 73:531–538

    Article  CAS  PubMed  Google Scholar 

  30. Sturgess NC, Kozlowski RZ, Carrington CA, Hales CN, Ashford ML (1988) Effects of sulphonylureas and diazoxide on insulin secretion and nucleotide-sensitive channels in an insulin-secreting cell line. Br J Pharmacol 95:83–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX (2005) Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280:6423–6433

    Article  CAS  PubMed  Google Scholar 

  32. Biden TJ, Schmitz-Peiffer C, Burchfield JG, Gurisik E, Cantley J, Mitchell CJ, Carpenter L (2008) The diverse roles of protein kinase C in pancreatic beta-cell function. Biochem Soc Trans 36:916–919

    Article  CAS  PubMed  Google Scholar 

  33. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T (2006) The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25:467–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Thore S, Wuttke A, Tengholm A (2007) Rapid turnover of phosphatidylinositol-4,5-bisphosphate in insulin-secreting cells mediated by Ca2+ and the ATP-to-ADP ratio. Diabetes 56:818–826

    Article  CAS  PubMed  Google Scholar 

  35. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S (2006) Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26:159–178

    Article  CAS  PubMed  Google Scholar 

  36. Liu D, Liman ER (2003) Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci USA 100:15160–15165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Nakagawa Y, Nagasawa M, Yamada S, Hara A, Mogami H, Nikolaev VO, Lohse MJ, Shigemura N, Ninomiya Y, Kojima I (2009) Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS One 4:e5106

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B (2005) Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37:267–278

    Article  CAS  PubMed  Google Scholar 

  39. Kang G, Chepurny OG, Rindler MJ, Collis L, Chepurny Z, Li WH, Harbeck M, Roe MW, Holz GG (2005) A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic beta cells. J Physiol 566:173–188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Dyachok O, Gylfe E (2004) Ca2+-induced Ca2+ release via inositol 1,4,5-trisphosphate receptors is amplified by protein kinase A and triggers exocytosis in pancreatic beta-cells. J Biol Chem 279:45455–45461

    Article  CAS  PubMed  Google Scholar 

  41. Brixel LR, Monteilh-Zoller MK, Ingenbrandt CS, Fleig A, Penner R, Enklaar T, Zabel BU, Prawitt D (2010) TRPM5 regulates glucose-stimulated insulin secretion. Pflugers Arch 460:69–76

    Article  CAS  PubMed  Google Scholar 

  42. Hofmann T, Chubanov V, Gudermann T, Montell C (2003) TRPM5 is a voltage-modulated and Ca2+-activated monovalent selective cation channel. Curr Biol 13:1153–1158

    Article  CAS  PubMed  Google Scholar 

  43. Wolf BA, Turk J, Sherman WR, McDaniel ML (1986) Intracellular Ca2+ mobilization by arachidonic acid. Comparison with myo-inositol 1,4,5-trisphosphate in isolated pancreatic islets. J BiolChem 261:3501–3511

    CAS  Google Scholar 

  44. Oike H, Wakamori M, Mori Y, Nakanishi H, Taguchi R, Misaka T, Matsumoto I, Abe K (2006) Arachidonic acid can function as a signaling modulator by activating the TRPM5 cation channel in taste receptor cells. Biochim Biophys Acta 1761:1078–1084

    Article  CAS  PubMed  Google Scholar 

  45. Miura Y, Matsui H (2003) Glucagon-like peptide-1 induces a cAMP-dependent increase of [Na+]i associated with insulin secretion in pancreatic beta-cells. Am J Physiol Endocrinol Metab 285:E1001–E1009

    Article  CAS  PubMed  Google Scholar 

  46. Leech CA, Habener JF (1997) Insulinotropic glucagon-like peptide-1-mediated activation of non-selective cation currents in insulinoma cells is mimicked by maitotoxin. J BiolChem 272:17987–17993

    CAS  Google Scholar 

  47. Brereton HM, Chen J, Rychkov G, Harland ML, Barritt GJ (2001) Maitotoxin activates an endogenous non-selective cation channel and is an effective initiator of the activation of the heterologously expressed hTRPC-1 (transient receptor potential) non-selective cation channel in H4-IIE liver cells. Biochim Biophys Acta 1540:107–126

    Article  CAS  PubMed  Google Scholar 

  48. Sinkins WG, Estacion M, Prasad V, Goel M, Shull GE, Kunze DL, Schilling WP (2009) Maitotoxin converts the plasmalemmal Ca2+ pump into a Ca2+-permeable nonselective cation channel. Am J Physiol Cell Physiol 297:C1533–C1543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Reale V, Hales CN, Ashford ML (1994) The effects of pyridine nucleotides on the activity of a calcium-activated nonselective cation channel in the rat insulinoma cell line, CRI-G1. J Membr Biol 142:299–307

    Article  CAS  PubMed  Google Scholar 

  50. Herson PS, Ashford ML (1997) Activation of a novel non-selective cation channel by alloxan and H2O2 in the rat insulin-secreting cell line CRI-G1. J Physiol 501(Pt 1):59–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Eisfeld J, Luckhoff A (2007) TRPM2. Handb.Exp.Pharmacol 179:237–252

    Article  CAS  PubMed  Google Scholar 

  52. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599

    Article  CAS  PubMed  Google Scholar 

  53. Toth B, Csanady L (2010) Identification of direct and indirect effectors of the transient receptor potential melastatin 2 (TRPM2) cation channel. J Biol Chem 285:30091–30102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, Masker K, Miller BA (2003) A Novel TRPM2 Isoform Inhibits Calcium Influx and Susceptibility to Cell Death. J BiolChem 278:16222–16229

    CAS  Google Scholar 

  55. McHugh D, Flemming R, Xu SZ, Perraud AL, Beech DJ (2003) Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 278:11002–11006

    Article  CAS  PubMed  Google Scholar 

  56. Csanady L, Torocsik B (2009) Four Ca2+ ions activate TRPM2 channels by binding in deep crevices near the pore but intracellularly of the gate. J Gen Physiol 133:189–203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Heiner I, Eisfeld J, Warnstedt M, Radukina N, Jungling E, Lückhoff A (2006) Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes. Biochem J 398:225–232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Leloup C, Tourrel-Cuzin C, Magnan C, Karaca M, Castel J, Carneiro L, Colombani AL, Ktorza A, Casteilla L, Penicaud L (2009) Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes 58:673–681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Pi J, Bai Y, Zhang Q, Wong V, Floering LM, Daniel K, Reece JM, Deeney JT, Andersen ME, Corkey BE, Collins S (2007) Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 56:1783–1791

    Article  CAS  PubMed  Google Scholar 

  60. Wehage E, Eisfeld J, Heiner I, Jungling E, Zitt C, Lückhoff A (2002) Activation of the Cation Channel Long Transient Receptor Potential Channel 2 (LTRPC2) by Hydrogen Peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J BiolChem 277:23150–23156

    CAS  Google Scholar 

  61. Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, Schmitz C, Knowles HM, Ferraris D, Li W, Zhang J, Stoddard BL, Scharenberg AM (2005) Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J BiolChem 280:6138–6148

    CAS  Google Scholar 

  62. Lange I, Penner R, Fleig A, Beck A (2008) Synergistic regulation of endogenous TRPM2 channels by adenine dinucleotides in primary human neutrophils. Cell Calcium 44:604–615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Kim BJ, Park KH, Yim CY, Takasawa S, Okamoto H, Im MJ, Kim UH (2008) Generation of nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose by glucagon-like peptide-1 evokes Ca2+ signal that is essential for insulin secretion in mouse pancreatic islets. Diabetes 57:868–878

    Article  CAS  PubMed  Google Scholar 

  64. Uchida K, Dezaki K, Dambindorj B, Inada H, Shiuchi T, Mori Y, Yada T, Minokoshi Y, Tominaga M (2010) Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes doi: 10.2337/db10-0276

    Google Scholar 

  65. Romero JR, Germer S, Castonguay AJ, Barton NS, Martin M, Zee RY (2010) Gene variation of the transient receptor potential cation channel, subfamily M, member 2 (TRPM2) and type 2 diabetes mellitus: a case-control study. Clin Chim Acta 411:1437–1440

    Article  CAS  PubMed  Google Scholar 

  66. Kraft R, Grimm C, Frenzel H, Harteneck C (2006) Inhibition of TRPM2 cation channels by N-(p-amylcinnamoyl)anthranilic acid. Br J Pharmacol 148:264–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Silva-Alves JM, Mares-Guia TR, Oliveira JS, Costa-Silva C, Bretz P, Araujo S, Ferreira E, Coimbra C, Sogayar MC, Reis R, Mares-Guia ML, Santoro MM (2008) Glucose-induced heat production, insulin secretion and lactate production in isolated Wistar rat pancreatic islets. Thermochim Acta 474:67–71

    Article  CAS  Google Scholar 

  68. Ohta M, Nelson D, Nelson J, Meglasson MD, Erecinska M (1990) Oxygen and temperature dependence of stimulated insulin secretion in isolated rat islets of Langerhans. J Biol Chem 265:17525–17532

    CAS  PubMed  Google Scholar 

  69. Fonfria E, Marshall ICB, Boyfield I, Skaper SD, Hughes JP, Owen DE, Zhang W, Miller BA, Benham CD, McNulty S (2005) Amyloid beta-peptide(1–42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem 95:715–723

    Article  CAS  PubMed  Google Scholar 

  70. De Vos A, Heimberg H, Quartier E, Huypens P, Bouwens L, Pipeleers D, Schuit F (1995) Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J Clin Invest 96:2489–2495

    Article  PubMed Central  PubMed  Google Scholar 

  71. Eizirik DL, Pipeleers DG, Ling Z, Welsh N, Hellerstrom C, Andersson A (1994) Major species differences between humans and rodents in the susceptibility to pancreatic beta-cell injury. Proc Natl Acad Sci USA 91:9253–9256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Elsner M, Tiedge M, Lenzen S (2003) Mechanism underlying resistance of human pancreatic beta cells against toxicity of streptozotocin and alloxan. Diabetologia 46:1713–1714

    Article  CAS  PubMed  Google Scholar 

  73. Dong XP, Wang X, Xu H (2010) TRP channels of intracellular membranes. J Neurochem 113:313–328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Mirnikjoo B, Balasubramanian K, Schroit AJ (2009) Mobilization of lysosomal calcium regulates the externalization of phosphatidylserine during apoptosis. J Biol Chem 284:6918–6923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Scharenberg A (2009) TRPM2 and pancreatic beta cell responses to oxidative stress. Islets 1:165–166

    Google Scholar 

  76. Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE (2005) Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J Biol Chem 280:22540–22548

    Article  CAS  PubMed  Google Scholar 

  77. Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278:21493–21501

    Article  CAS  PubMed  Google Scholar 

  78. Lee N, Chen J, Sun L, Wu S, Gray KR, Rich A, Huang M, Lin JH, Feder JN, Janovitz EB, Levesque PC, Blanar MA (2003) Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3). J Biol Chem 278:20890–20897

    Article  CAS  PubMed  Google Scholar 

  79. Grimm C, Kraft R, Schultz G, Harteneck C (2005) Activation of the melastatin-related cation channel TRPM3 [corrected] by D-erythro-sphingosine. Mol Pharmacol 67:798–805

    Article  CAS  PubMed  Google Scholar 

  80. Bicikova M, Klak J, Hill M, Zizka Z, Hampl R, Calda P (2002) Two neuroactive steroids in midpregnancy as measured in maternal and fetal sera and in amniotic fluid. Steroids 67: 399–402

    Article  CAS  PubMed  Google Scholar 

  81. Tagawa N, Tamanaka J, Fujinami A, Kobayashi Y, Takano T, Fukata S, Kuma K, Tada H, Amino N (2000) Serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, and pregnenolone sulfate concentrations in patients with hyperthyroidism and hypothyroidism. Clin Chem 46:523–528

    CAS  PubMed  Google Scholar 

  82. Bicikova M, Tallova J, Hill M, Krausova Z, Hampl R (2000) Serum concentrations of some neuroactive steroids in women suffering from mixed anxiety-depressive disorder. Neurochem Res 25:1623–1627

    Article  CAS  PubMed  Google Scholar 

  83. de Peretti E, Forest MG, Loras B, Morel Y, David M, Francois R, Bertrand J (1986) Usefulness of plasma pregnenolone sulfate in testing pituitary-adrenal function in children. Acta Endocrinol Suppl (Copenh) 279:259–263

    Google Scholar 

  84. Wagner TF, Drews A, Loch S, Mohr F, Philipp SE, Lambert S, Oberwinkler J (2010) TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Arch 460:755–765

    Article  CAS  PubMed  Google Scholar 

  85. Nilius B, Prenen J, Wissenbach U, Bodding M, Droogmans G (2001) Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflugers Arch 443:227–233

    Article  CAS  PubMed  Google Scholar 

  86. Becker D, Blase C, Bereiter-Hahn J, Jendrach M (2005) TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci 118:2435–2440

    Article  CAS  PubMed  Google Scholar 

  87. Phan MN, Leddy HA, Votta BJ, Kumar S, Levy DS, Lipshutz DB, Lee SH, Liedtke W, Guilak F (2009) Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum 60:3028–3037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Miley HE, Sheader EA, Brown PD, Best L (1997) Glucose-induced swelling in rat pancreatic beta-cells. J Physiol 504(Pt 1):191–198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Grapengiesser E, Gylfe E, Dansk H, Hellman B (2003) Stretch activation of Ca2+ transients in pancreatic beta cells by mobilization of intracellular stores. Pancreas 26:82–86

    Article  CAS  PubMed  Google Scholar 

  90. Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P, Vriens J, Cairns W, Wissenbach U, Prenen J, Flockerzi V, Droogmans G, Benham CD, Nilius B (2002) Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J BiolChem 277:13569–13577

    CAS  Google Scholar 

  91. Smith PL, Maloney KN, Pothen RG, Clardy J, Clapham DE (2006) Bisandrographolide from Andrographis paniculata activates TRPV4 channels. J Biol Chem 281:29897–29904

    Article  CAS  PubMed  Google Scholar 

  92. Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, McCafferty GP, Chendrimada TP, Lashinger ES, Gordon E, Evans L, Misajet BA, Demarini DJ, Nation JH, Casillas LN, Marquis RW, Votta BJ, Sheardown SA, Xu X, Brooks DP, Laping NJ, Westfall TD (2008) N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropa noyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamid e (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: Part I. J Pharmacol Exp Ther 326:432–442

    Article  CAS  PubMed  Google Scholar 

  93. Gram DX, Ahren B, Nagy I, Olsen UB, Brand CL, Sundler F, Tabanera R, Svendsen O, Carr RD, Santha P, Wierup N, Hansen AJ (2007) Capsaicin-sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes. Eur J Neurosci 25:213–223

    Article  PubMed  Google Scholar 

  94. Razavi R, Chan Y, Afifiyan FN, Liu XJ, Wan X, Yantha J, Tsui H, Tang L, Tsai S, Santamaria P, Driver JP, Serreze D, Salter MW, Dosch HM (2006) TRPV1(+) Sensory Neurons Control beta Cell Stress and Islet Inflammation in Autoimmune Diabetes. Cell 127:1123–1135

    Article  CAS  PubMed  Google Scholar 

  95. Dyachok O, Gylfe E (2001) Store-operated influx of Ca2+ in pancreatic beta-cells exhibits graded dependence on the filling of the endoplasmic reticulum. J Cell Sci 114:2179–2186

    CAS  PubMed  Google Scholar 

  96. Dehaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587:2275–2298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Goswami C, Islam MS (2010) Transient receptor potential channels: what is happening? Reflections in the wake of the 2009 TRP meeting, karolinska institutet, stockholm. Channels (Austin) 4:124–135

    Article  Google Scholar 

  98. Parnas M, Katz B, Lev S, Tzarfaty V, Dadon D, Gordon-Shaag A, Metzner H, Yaka R, Minke B (2009) Membrane lipid modulations remove divalent open channel block from TRP-like and NMDA channels. J Neurosci 29:2371–2383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Romain Guinamard and Frank Kühn for useful discussions. I am grateful to Stockholm County Council, Forskningscentrum, Landes Bioscience, and Engelbrechts kliniken. Financial support was obtained from the Swedish Research Council

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Shahidul Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Islam, M.S. (2011). TRP Channels of Islets. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_42

Download citation

Publish with us

Policies and ethics