Skip to main content

Advertisement

Log in

MEG-SIM: A Web Portal for Testing MEG Analysis Methods using Realistic Simulated and Empirical Data

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

MEG and EEG measure electrophysiological activity in the brain with exquisite temporal resolution. Because of this unique strength relative to noninvasive hemodynamic-based measures (fMRI, PET), the complementary nature of hemodynamic and electrophysiological techniques is becoming more widely recognized (e.g., Human Connectome Project). However, the available analysis methods for solving the inverse problem for MEG and EEG have not been compared and standardized to the extent that they have for fMRI/PET. A number of factors, including the non-uniqueness of the solution to the inverse problem for MEG/EEG, have led to multiple analysis techniques which have not been tested on consistent datasets, making direct comparisons of techniques challenging (or impossible). Since each of the methods is known to have their own set of strengths and weaknesses, it would be beneficial to quantify them. Toward this end, we are announcing the establishment of a website containing an extensive series of realistic simulated data for testing purposes (http://cobre.mrn.org/megsim/). Here, we present: 1) a brief overview of the basic types of inverse procedures; 2) the rationale and description of the testbed created; and 3) cases emphasizing functional connectivity (e.g., oscillatory activity) suitable for a wide assortment of analyses including independent component analysis (ICA), Granger Causality/Directed transfer function, and single-trial analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahlfors, S. P., Han, J., Lin, F. H., Witzel, T., Belliveau, J. W., Hämäläinen, M. S., et al. (2010). Cancellation of EEG and MEG signals generated by extended and distributed sources. Human Brain Mapping, 31, 140–149.

    PubMed  Google Scholar 

  • Aine, C., Adair, J., Knoefel, J., Hudson, D., Qualls, C., Kovacevic, S., et al. (2005). Temporal dynamics of age-related differences in auditory incidental verbal learning. Cognitive Brain Research, 24, 1–18.

    Article  PubMed  Google Scholar 

  • Aine, C., Huang, M., Stephen, J., & Christner, R. (2000). Multistart algorithms for MEG empirical data analysis reliably characterize locations and time courses of multiple sources. NeuroImage, 12, 159–172.

    Article  PubMed  CAS  Google Scholar 

  • Aine, C. J., Bryant, J. E., Knoefel, J. E., Adair, J. C., Hart, B., Donahue, C. H., et al. (2010). Different strategies for auditory word recognition in healthy versus normal aging. NeuroImage, 49, 3319–3330.

    Article  PubMed  CAS  Google Scholar 

  • Aine, C. J., Stephen, J. M., Christner, R., Hudson, D., & Best, E. (2003). Task relevance enhances early transient and late slow-wave activity of distributed cortical sources. Journal of Computational Neuroscience, 15, 203–221.

    Article  PubMed  CAS  Google Scholar 

  • Aine, C. J., Supek, S., George, J. S., Ranken, D., Lewine, J., Sanders, J., et al. (1996). Retinotopic organization of human visual cortex: departures from the classical model. Cerebral Cortex, 6, 354–361.

    Article  PubMed  CAS  Google Scholar 

  • Aine, C. J., Woodruff, C. C., Knoefel, J. E., Adair, J. C., Hudson, D., Qualls, C., et al. (2006). Aging: Compensation or maturation? NeuroImage, 32, 1891–1904.

    Article  PubMed  Google Scholar 

  • Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T., & Zilles, K. (2000). Brodmann’s areas 17 and 18 brought into stereotaxic space-where and how variable? NeuroImage, 11, 66–84.

    Article  PubMed  CAS  Google Scholar 

  • Baillet, S., Mosher, J., & Leahy, R. (2001). Electromagnetic brain mapping. IEEE Signal Processing Magazine: 14–30.

  • Bisley, J. W., Krishna, B. S., & Goldberg, M. E. (2004). A rapid and precise on-response in posterior parietal cortex. Journal of Neuroscience, 24, 1833–1838.

    Article  PubMed  CAS  Google Scholar 

  • Brookes, M. J., Stevenson, C. M., Barnes, G. R., Hillebrand, A., Simpson, M. I., Francis, S. T., et al. (2007). Beamformer reconstruction of correlated sources using a modified source model. NeuroImage, 34, 1454–1465.

    Article  PubMed  Google Scholar 

  • Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., et al. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313, 1626–1628.

    Article  PubMed  CAS  Google Scholar 

  • Cauller, L. J. (1998). Backward Cortical Projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. The Journal of Comparative Neurology, 390, 297–310.

    Article  PubMed  CAS  Google Scholar 

  • Dalal, S. S., Sekihara, K., & Nagarajan, S. S. (2006). Modified beamformers for coherent source region suppression. IEEE Transactions on Biomedical Engineering, 53, 1357–1363.

    Article  PubMed  Google Scholar 

  • Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine, J. D., et al. (2000). Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron, 26, 55–67.

    Article  PubMed  CAS  Google Scholar 

  • Dale, A. M., & Sereno, M. I. (1993). Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. Journal of Cognitive Neuroscience, 5, 162–176.

    Article  Google Scholar 

  • David, O., Garnero, L., Cosmelli, D., & Varela, F. J. (2002). Estimation of neural dynamics from MEG/EEG cortical current density maps: application to the reconstruction of large-scale cortical synchrony. IEEE BME, 49, 975–987.

    Article  Google Scholar 

  • de Lange, F. P., Jensen, O., Bauer, M., & Toni, I. (2008). Interactions between posterior gamma and frontal alpha/beta oscillations during imagined actions. Frontiers in Human Neuroscience, 2, 7.

    PubMed  Google Scholar 

  • Diwakar, M., Huang, M. X., Srinivasan, R., Harrington, D. L., Robb, A., Angeles, A., et al. (2011). Dual-Core Beamformer for obtaining highly correlated neuronal networks in MEG. NeuroImage, 54, 253–263.

    Article  PubMed  Google Scholar 

  • Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2, 704–716.

    Article  PubMed  CAS  Google Scholar 

  • Ermer, J. J., Mosher, J. C., Baillet, S., & Leah, R. M. (2001). Rapidly recomputable EEG forward models for realistic head shapes. Physics in Medicine and Biology, 46, 1265–1281.

    Article  PubMed  CAS  Google Scholar 

  • Ermer, J. J., Mosher, J. C., Huang, M., & Leahy, R. M. (2000). Paired MEG data set source localization using recursively applied and projected (RAP) MUSIC. IEEE Transactions on Biomedical Engineering, 47, 1248–1260.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, M., Wagner, M., Kohler, T., & Wischmann, H. A. (1999). Linear and nonlinear current density reconstructions. Journal of Clinical Neurophysiology, 16, 267–295.

    Article  PubMed  CAS  Google Scholar 

  • Golubic, S. J., Susac, A., Grilj, V., Ranken, D., Huonker, R., Haueisen, J., et al. (2011). Size matters: MEG empirical and simulation study on source localization of the earliest visual activity in the occipital cortex. Medical & Biological Engineering & Computing, 49, 545–554.

    Article  Google Scholar 

  • Grave de Peralta-Menendez, R., & Gonzalez-Andino, S. L. (1998). A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem. IEEE Transactions on Biomedical Engineering, 45, 440–448.

    Article  PubMed  CAS  Google Scholar 

  • Gray, C. M., Konig, P., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338, 334–337.

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt, R. E., Ossadtchi, A., & Pflieger, M. E. (2005). Local linear estimators for the bioelectromagnetic inverse problem. IEEE Transactions on Signal Processing, 53, 3403–3412.

    Article  Google Scholar 

  • Hämäläinen, M., Hari, R., Ilmoniemi, R., Knuutila, J., & Lounasmaa, O. (1993). Magnetoencephalography? Theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65, 413–497.

    Article  Google Scholar 

  • Hämäläinen, M. S., & Ilmoniemi, R. J. (1994). Interpreting magnetic fields of the brain: minimum norm estimates. Medical & Biological Engineering & Computing, 32, 35–42.

    Article  Google Scholar 

  • Harrison, R., Aine, C., Chen, H.-W., & Flynn, E. (1996). Comparison of minimization methods for spatio-temporal electromagnetic source localization using temporal constraints. NeuroImage, 3, S64.

    Article  Google Scholar 

  • Hillebrand, A., & Barnes, G. R. (2002). A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. NeuroImage, 16, 638–650.

    Article  PubMed  CAS  Google Scholar 

  • Huang, M., Aine, C. J., Supek, S., Best, E., Ranken, D., & Flynn, E. R. (1998). Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography. Electroencephalography and Clinical Neurophysiology, 108, 32–44.

    Article  PubMed  CAS  Google Scholar 

  • Huang, M. X., Dale, A. M., Song, T., Halgren, E., Harrington, D. L., Podgorny, I., et al. (2006). Vector-based spatial-temporal minimum L1-norm solution for MEG. NeuroImage, 31, 1025–1037.

    Article  PubMed  Google Scholar 

  • Huang, M. X., Mosher, J. C., & Leahy, R. M. (1999). A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. Physics in Medicine and Biology, 44, 423–440.

    Article  PubMed  CAS  Google Scholar 

  • Hui, H. B., & Leahy, R. M. (2006). Linearly constrained MEG beamformers for MVAR modeling of cortical interactions, 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano. 237–240.

  • Hui, H. B., Pantazis, D., Bressler, S. L., & Leahy, R. M. (2010). Identifying true cortical interactions in MEG using the nulling beamformer. NeuroImage, 49, 3161–3174.

    Article  PubMed  Google Scholar 

  • Ioannides, A. A., Bolton, J. P., & Clarke, C. J. S. (1990). Continous probabilistic solutions to the biomagnetic inverse problem. Inverse Problems, 6, 523–542.

    Article  Google Scholar 

  • Ioannides, A. A., Fenwick, P. B., Lumsden, J., Liu, M. J., Bamidis, P. D., Squires, K. C., et al. (1994). Activation sequence of discrete brain areas during cognitive processes: results from magnetic field tomography. Electroencephalography and Clinical Neurophysiology, 91, 399–402.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, O., & Lisman, J. E. (1998). An oscillatory short-term memory buffer model can account for data on the Sternberg task. Journal of Neuroscience, 18, 10688–10699.

    PubMed  CAS  Google Scholar 

  • Jun, S. C., George, J. S., Paré-Blagoev, J., Plis, S. M., Ranken, D. M., Schmidt, D. M., et al. (2005). Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data. NeuroImage, 28, 84–98.

    Article  PubMed  Google Scholar 

  • Kovacevic, S., Qualls, C., Adair, J., Hudson, D., Woodruff, C., Knoefel, J., et al. (2005). Age-related effects on superior temmporal gyrus activity during an oddball task. Neuroreport, 16, 1075–1079.

    Article  PubMed  Google Scholar 

  • Lamme, V. A., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23, 571–579.

    Article  PubMed  CAS  Google Scholar 

  • Lampl, I., Reichova, I., & Ferster, D. (1999). Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron, 22, 361–374.

    Article  PubMed  CAS  Google Scholar 

  • Liljestrom, M., Kujala, J., Jensen, O., & Salmelin, R. (2005). Neuromagnetic localization of rhythmic activity in the human brain: a comparison of three methods. NeuroImage, 25, 734–745.

    Article  PubMed  CAS  Google Scholar 

  • Lin, F. H., Witzel, T., Ahlfors, S. P., Stufflebeam, S. M., Belliveau, J. W., & Hämäläinen, M. S. (2006). Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. NeuroImage, 31, 160–171.

    Article  PubMed  Google Scholar 

  • Liu, A. K., Belliveau, J. W., & Dale, A. M. (1998). Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proceedings of the National Academy of Sciences of the United States of America, 95, 8945–8950.

    Article  PubMed  CAS  Google Scholar 

  • Luck, S. J. (2005). An introduction to the event-related potential technique. MIT Press.

  • Mattout, J., Phillips, C., Penny, W. D., Rugg, M. D., & Friston, K. J. (2006). MEG source localization under multiple constraints: an extended Bayesian framework. NeuroImage, 30, 753–767.

    Article  PubMed  Google Scholar 

  • Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2000). Intermodal selective attention in monkeys. II: physiological mechanisms of modulation. Cerebral Cortex, 10, 359–370.

    Article  PubMed  CAS  Google Scholar 

  • Michel, C. M., Murray, M. M., Lantz, G., Gonzalez, S., Spinelli, L., & Grave de Peralta, R. (2004). EEG source imaging. Clinical Neurophysiology, 115, 2195–2222.

    Article  PubMed  Google Scholar 

  • Moiseev, A., Gaspar, J. M., Schneider, J. A., & Herdman, A. T. (2011). Application of multi-source minimum variance beamformers for reconstruction of correlated neural activity. NeuroImage, 58, 481–489.

    Article  PubMed  Google Scholar 

  • Mosher, J. C., Lewis, P. S., & Leahy, R. M. (1992). Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Transactions on Biomedical Engineering, 39, 541–557.

    Article  PubMed  CAS  Google Scholar 

  • Nelder, J., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7, 308–313.

    Google Scholar 

  • Nyberg, L., Marklund, P., Persson, J., Cabeza, R., Forkstam, C., Petersson, K. M., et al. (2003). Common prefrontal activations during working memory, episodic memory, and semantic memory. Neuropsychologia, 41, 371–377.

    Article  PubMed  Google Scholar 

  • Osipova, D., Hermes, D., & Jensen, O. (2008). Gamma power is phase-locked to posterior alpha activity. PLoS One, 3, e3990.

    Article  PubMed  Google Scholar 

  • Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24(Suppl D), 5–12.

    PubMed  Google Scholar 

  • Pascual-Marqui, R. D., Lehmann, D., Koenig, T., Kochi, K., Merlo, M. C., Hell, D., et al. (1999). Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Research, 90, 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18, 49–65.

    Article  PubMed  CAS  Google Scholar 

  • Pickles, J. O. (1988). An introduction to the physiology of hearing (2nd ed.). San Diego: Academic.

    Google Scholar 

  • Portin, K., Vanni, S., Virsu, V., & Hari, R. (1999). Stronger occipital cortical activation to lower than upper visual field stimuli. Neuromagnetic recordings. Experimental Brain Research, 124, 287–294.

    Article  CAS  Google Scholar 

  • Ranken, D., Best, E., Schmidt, D. M., George, J. S., Wood, C. C., & Huang, M. (2002). MEG/EEG forward and inverse modeling using MRIVIEW. In H. Nowak, J. Jaueisen, F. Giebler and R. Huonker (Eds.), Proceedings of the 13th international conference on biomagnetism, pp. 785–787.

  • Ranken, D., & George, J. S. (1993). MRIVIEW: An interactive computational tool for investigation of brain structure and function. In Proceedings of the IEEE visualization ’93. IEEE Computer Society Press, pp. 324–331.

  • Ranken, D. M., Stephen, J. M., & George, J. S. (2004). MUSIC seeded multi-dipole MEG modeling using the Constrained Start Spatio-Temporal modeling procedure. Neurology and Clinical Neurophysiology, 2004, 80.

    PubMed  CAS  Google Scholar 

  • Rovamo, J., & Virsu, V. (1979). An estimation and application of the human cortical magnification factor. Experimental Brain Research, 37, 495–510.

    Article  CAS  Google Scholar 

  • Sarvas, J. (1987). Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Physics in Medicine and Biology, 32, 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Scherg, M., & Von Cramon, D. (1986). Evoked dipole source potentials of the human auditory cortex. Electroencephalography and Clinical Neurophysiology, 65, 344–360.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, D. M., George, J. S., & Wood, C. C. (1999). Bayesian inference applied to the electromagnetic inverse problem. Human Brain Mapping, 7, 195–212.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, A. M. (1986). Auditory nerve and spiral ganglion cells: Morphology and organization. In R. A. Altschuler, R. P. Bobbin, & D. W. Hoffman (Eds.), Neurobiology of hearing: The cochlea (pp. 271–282). New York: Raven.

    Google Scholar 

  • Sekihara, K., Nagarajan, S. S., Poeppel, D., Marantz, A., & Miyashita, Y. (2001). Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique. IEEE Transactions on Biomedical Engineering, 48, 760–771.

    Article  PubMed  CAS  Google Scholar 

  • Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations? Neuron, 24(49–65), 111–125.

    Google Scholar 

  • Stephen, J. M., Aine, C. J., Christner, R. F., Ranken, D., Huang, M., & Best, E. (2002). Central versus peripheral visual field stimulation results in timing differences in dorsal stream sources as measured with MEG. Vision Research, 42, 3059–3074.

    Article  PubMed  Google Scholar 

  • Stephen, J. M., Aine, C. J., Ranken, D., Hudson, D., & Shih, J. J. (2003a). Multidipole analysis of simulated epileptic spikes with real background activity. Journal of Clinical Neurophysiology, 20, 1–16.

    Article  CAS  Google Scholar 

  • Stephen, J. M., Davis, L. E., Aine, C. J., Ranken, D., Herman, M., Hudson, D., et al. (2003b). Investigation of the normal proximal somatomotor system using magnetoencephalography. Clinical Neurophysiology, 114, 1781–1792.

    Article  Google Scholar 

  • Stephen, J. M., Ranken, D., Best, E., Adair, J., Knoefel, J., Kovacevic, S., et al. (2006). Aging changes and gender differences in response to median nerve stimulation measured with MEG. Clinical Neurophysiology, 117, 131–143.

    Article  PubMed  Google Scholar 

  • Stephen, J. M., Ranken, D. M., Aine, C. J., Weisend, M. P., & Shih, J. J. (2005). Differentiability of simulated MEG hippocampal, medial temporal and neocortical temporal epileptic spike activity. Journal of Clinical Neurophysiology, 22, 388–401.

    PubMed  Google Scholar 

  • Sun, M. (1997). An efficient algorithm for computing multishell spherical volume conductor models in EEG dipole source localization. IEEE BME, 44, 1243–1252.

    Article  CAS  Google Scholar 

  • Supek, S., & Aine, C. (1997). Spatio-temporal modeling of neuromagnetic data: I. Multisource location vs. timecourse estimation accuracy. Human Brain Mapping, 5, 139–153.

    Article  PubMed  CAS  Google Scholar 

  • Susac, A., Ilmoniemi, R. J., Pihko, E., Ranken, D., & Supek, S. (2010). Early cortical responses are sensitive to changes in face stimuli. Brain Research, 1346, 155–164.

    Article  PubMed  CAS  Google Scholar 

  • Susac, A., Ilmoniemi, R. J., Ranken, D., & Supek, S. (2011). Face activated neurodynamic cortical networks. Medical & Biological Engineering & Computing, 49, 531–543.

    Article  Google Scholar 

  • Uutela, K., Hämäläinen, M., & Somersalo, E. (1999). Visualization of magnetoencephalographic data using minimum current estimates. NeuroImage, 10, 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Van Veen, B. D., van Drongelen, W., Yuchtman, M., & Suzuki, A. (1997). Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Transactions on Biomedical Engineering, 44, 867–880.

    Article  PubMed  Google Scholar 

  • Vanni, S., Dojat, M., Warnking, J., Delon-Martin, C., Segebarth, C., & Bullier, J. (2004). Timing of interactions across the visual field in the human cortex. NeuroImage, 21, 818–828.

    Article  PubMed  CAS  Google Scholar 

  • von Stein, A., Chiang, C., & Konig, P. (2000). Top-down processing mediated by interareal synchronization. Proceedings of the National Academy of Sciences of the United States of America, 97, 14748–14753.

    Article  Google Scholar 

  • Vrba, J., & Robinson, S. E. (2000). Linearly constrained minimum variance beamformers, synthetic aperture magnetometry, and MUSIC in MEG applications. IEEE Conference Record of the 34th Asilomar Conference on Signals, Systems and Computers, Vol. 1, 313–317.

  • Wagner, M., Fuchs, M., & Kastner, J. (2004). Evaluation of sLORETA in the presence of noise and multiple sources. Brain Topography, 16, 277–280.

    Article  PubMed  Google Scholar 

  • Wagner, M., Fuchs, M., & Kastner, J. (2007) SWARM: sLORETA-weighted accurate minimum-norm inverse solutions. Proceedings of the 15th International Conference on Biomagnetism. Vancouver, BC Canada, Elsevier ICS 1300.

  • Wagner, M., Fuchs, M., & Kastner, J. (2008). sLORETA, eLORETA, and SWARM in the presence of noise and multiple sources. In R. Kakigi, K. Yokosawa, S. Kuriki (Eds.), Biomagnetism: Interdisciplinary research and exploration. Hokkaido University Press, pp. 74–76.

  • Wang, J. Z., Williamson, S. J., & Kaufman, L. (1992). Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation. IEEE Transactions on Biomedical Engineering, 39, 665–675.

    Article  PubMed  CAS  Google Scholar 

  • Weisend, M., Hanlon, F. M., Montano, R., Ahlfors, S., Leuthold, A. C., Pantazis, D., et al. (2007). Paving the way for cross-site pooling of magnetoencephalography (MEG) data. International Congress Series, 1300, 615–618.

    Article  Google Scholar 

  • Wischmann, H. A., Fuchs, M., Wagner, A. D., & Doessel, O. (1995). Current density imaging: A time series reconstruction implementing a “best fixed distributions” constraint. In C. Baumgartner, L. Deecke, G. Stroink, & S. J. Williamson (Eds.), Biomagnetism: Fundamental research and clinical applications (pp. 427–432). Amsterdam: Ios Press.

    Google Scholar 

  • Wipf, D. P., Owen, J. P., Attias, H. T., Sekihara, K., & Nagarajan, S. S. (2010). Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG. NeuroImage, 49, 641–655.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was funded by NIH grants R21MH080141-02, 1P20 RR021938-03, and R01AG029495-03. It was also supported in part by the Department of Energy under Award Number DE-FG02-99ER62764 to the Mind Research Network. We thank M. Weisend, S. Ahlfors, M. Hämäläinen, J. Mosher, A. Leuthold, and A. Georgopoulos for their help when the initial partnership between institutions was established which permitted the acquisition of these data. The content of this study is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Furthermore, the authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Aine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aine, C.J., Sanfratello, L., Ranken, D. et al. MEG-SIM: A Web Portal for Testing MEG Analysis Methods using Realistic Simulated and Empirical Data. Neuroinform 10, 141–158 (2012). https://doi.org/10.1007/s12021-011-9132-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-011-9132-z

Keywords

Navigation