Skip to main content
Log in

An estimation and application of the human cortical magnification factor

  • Original Articles
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Comparisons of the published data on the density D of receptive fields of retinal ganglion cells and on the cortical magnification factor M indicated that M2 is directly proportional to D in primates. Therefore, the human M can be estimated for the principal meridians of the visual field from the density-distribution of retinal ganglion cells and from the density of the centralmost cones. Using the previously published empirical data, we estimated the values of the human M and express the values in four simple equations that can be used for finding the value of M for any location of the visual field. The monocular values of M are not radially symmetric.

These analytically expressed values of M make it possible to predict contrast sensitivity and resolution for any location of the visual field. We measured contrast sensitivity functions at 25 different locations and found that the functions could be made similar by scaling the retinal dimensions of test gratings by the inverse values of M. Visual acuity and resolution could be predicted accurately for all retinal locations by means of a single constant multiplier of the estimated M.

The results indicate that the functional and structural properties of the visual system are very closely and similarly related across the whole retina. Visual acuity, e.g., bears the same optimal relation to the density of sampling executed by retinal ganglion cells at all locations of the visual field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albus, K.: A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. I. The precision of the topography. Exp. Brain Res. 24, 159–179 (1975)

    Google Scholar 

  • Allman, M.J., Kaas, J.H.: Representation of the visual field in striate and adjoining cortex of the owl monkey (aotus trivirgatus). Brain Res. 35, 89–106 (1971)

    Google Scholar 

  • Brindley, G.S., Lewin, W.S.: The sensations produced by electrical stimulation of the visual cortex. J. Physiol. (Lond.) 196, 479–493 (1968)

    Google Scholar 

  • Campbell, F.W., Green, D.G.: Optical and retinal factors affecting visual resolution. J. Physiol. (Lond.) 181, 576–593 (1965)

    Google Scholar 

  • Clark, W.E., Le Gros: The laminar organization and cell content of the lateral geniculate body in the monkey. J. Anat. 75, 419–433 (1941)

    Google Scholar 

  • Cowey, A., Rolls, E.T.: Human cortical magnification factor and its relation to visual acuity. Exp. Brain Res. 21, 447–454 (1974)

    Google Scholar 

  • Creutzfeldt, O.D., Kuhnt, U., Benevento, L.A.: An intracellular analysis of visual cortical neurones to moving stimuli: Responses in a co-operative neuronal network. Exp. Brain Res. 21, 251–274 (1974)

    Google Scholar 

  • Daniel, P.M., Whitteridge, W.: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. (Lond.) 159, 203–221 (1961)

    Google Scholar 

  • Drasdo, N.: The neural representation of visual space. Nature 266, 554–556 (1977)

    Google Scholar 

  • Drasdo, N., Fowler, C.W.: Non-linear projection of the retinal image in a wide-angle schematic eye. Br. J. Ophthal. 58, 709–714 (1974)

    Google Scholar 

  • Filimonoff, I.N.: Über die Variabilität der Groβhirnrindenstruktur. II. Regio occipitalis beim erwachsenen Menschen. J. Physiol. Neurol. (Lpz.) 44, 1–96 (1932)

    Google Scholar 

  • Green, D.G.: Regional variations in the visual acuity for interference fringes on the retina. J. Physiol. (Lond.) 207, 351–356 (1970)

    Google Scholar 

  • Guld, C., Bertulis, A.: Representation of fovea in the striate cortex of vervet monkey, cercopithecus aethiops pygerythrus. Vision Res. 16, 629–631 (1976)

    Google Scholar 

  • Harvey, L.O., Jr., Pöppel, E.: Contrast sensitivity of the human retina. Am. J. Optom. 49, 748–753 (1972)

    Google Scholar 

  • Hubel, D.H., Freeman, D.C.: Projection into the visual field of ocular dominance columns in macaque monkey. Brain Res. 122, 336–343 (1977)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor. J. Comp. Neurol. 158, 295–305 (1974)

    Google Scholar 

  • Hughes, A.: The topography of vision in mammals of contrasting life style: Comparative optics and retinal organization. In: Handbook of Sensory Physiology, Crescitelli, F. (ed.). Vol. VII/5, pp. 613–756. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  • Hughes, A.: The neural representation of visual space. Nature 276, 422 (1978)

    Google Scholar 

  • Koenderink, J.J., Bouman, M.A., Bueno de Mesquita, A.E., Slappendel, S.: Perimetry of contrast detection thresholds of moving spatial sine wave patterns, III. The target extent as a sensitivity controlling parameter. J. Opt. Soc. Am. 68, 854–860 (1978)

    Google Scholar 

  • Lee, B.B., Cleland, B.G., Creutzfeldt, O.D.: The retinal input to cells in area 17 of the cat's cortex. Exp. Brain Res. 30, 527–538 (1977)

    Google Scholar 

  • Levick, W.R., Cleland, B.G., Dubin, M.W.: Lateral geniculate neurons of cat: Retinal inputs and physiology. Invest. Ophthal. 11, 302–311 (1972)

    Google Scholar 

  • Malpeli, J.G., Baker, F.H.: The representation of the visual field in the lateral geniculate nucleus of macaca mulatta. J. Comp. Neurol. 161, 569–594 (1975)

    Google Scholar 

  • Missotten, L.: Estimation of the ratio of cones to neurons in the fovea of the human retina. Invest. Ophthal. 13, 1045–1049 (1974)

    Google Scholar 

  • Myerson, J., Manis, P.B., Miezin, F.M., Allman, J.M.: Magnification in striate cortex and retinal ganglion cell layer of owl monkey: A quantitative comparison. Science 198, 855–857 (1977)

    Google Scholar 

  • Ogden, T.E.: The morphology of retinal neurons of the owl monkey aotes. J. Comp. Neurol. 153, 399–428 (1974)

    Google Scholar 

  • Oppel, O.: Untersuchungen über die Verteilung und Zahl der retinalen Ganglienzellen beim Menschen. Graefes Arch. Klin. Exp. Ophthal. 172, 1–22 (1967)

    Google Scholar 

  • Österberg, G.: Topography of the layer of rods and cones in the human retina. Acta Ophthal. (Suppl.) 6, 11–97 (1935)

    Google Scholar 

  • Polyak, S.: The vertebrate visual system. Chicago: University of Chicago Press 1957

    Google Scholar 

  • Potts, A.M., Hodges, D., Shelman, C.B., Fritz, K.J., Levy, N.S., Mangall, Y.: Morphology of the primate optic nerve. I. Method and total fibre count. Invest. Ophthal. 11, 980–988 (1972)

    Google Scholar 

  • Rolls, E.T., Cowey, A.: Topography of the retina and striate cortex and its relationship to visual acuity in rhesus monkeys and squirrel monkeys. Exp. Brain Res. 10, 298–310 (1970)

    Google Scholar 

  • Rovamo, J., Virsu, V., Näsänen, R.: Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature 271, 54–56 (1978)

    Google Scholar 

  • Singer, W., Creutzfeldt, O.D.: Reciprocal lateral inhibition of on-and off-center neurones in the lateral geniculate body of the cat. Exp. Brain Res. 10, 311–330 (1970)

    Google Scholar 

  • Stensaas, S.S., Eddington, D.K., Dobelle, W.H.: The topography and variability of the primary visual cortex in man. J. Neurosurg. 40, 747–755 (1974)

    Google Scholar 

  • Talbot, S.A., Marshall, W.H.: Physiological studies on neural mechanisms of visual localization and discrimination. Am. J. Ophthal. 24, 1255–1264 (1941)

    Google Scholar 

  • Tusa, R.J., Palmer, L.A., Rosenquist, A.C.: The retinotopic organization of area 17 (striate cortex) in the cat. J. Comp. Neurol. 177, 213–236 (1978)

    Google Scholar 

  • Van Buren, J.M.: The retinal ganglion cell layer. Springfield: Thomas 1963

    Google Scholar 

  • Virsu, V., Rovamo, J.: Visual resolution, contrast sensitivity, and the cortical magnification factor. Exp. Brain Res. 37, 1–16 (1979)

    Google Scholar 

  • Vos, J.J., Walraven, J., Meeteren, A. van: Light profiles of the foveal image of a point source. Vision Res. 16, 215–219 (1976)

    Google Scholar 

  • Webb, S.V., Kaas, J.H.: The sizes and distribution of ganglion cells in the retina of the owl monkey, aotus trivirgatus. Vision Res. 16, 1247–1254 (1976)

    Google Scholar 

  • Weymouth, F.W.: Visual sensory units and the minimal angle of resolution. Am. J. Ophthal. 46, 102–113 (1958)

    Google Scholar 

  • Wertheim, T.: Über die indirekte Sehschärfe. Z. Psychol. Physiol. Sinnesorg. 7, 172–187 (1894)

    Google Scholar 

  • Whitteridge, D., Daniel, P.M.: The representation of the visual field on the calcarine cortex. In: The visual system: Neurophysiology and psychophysics, Jung, R., Kornhuber, H. (eds.). Berlin, Göttingen, Heidelberg: Springer 1961

    Google Scholar 

  • Wilson, J.R., Sherman, S.M.: Receptive-field characteristics of neurons in cat striate cortex: Changes with visual field eccentricity. J. Neurophysiol. 39, 512–533 (1976)

    Google Scholar 

  • Zeki, S.M.: Functional specialization in the visual cortex of the rhesus monkey. Nature 274, 423–428 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rovamo, J., Virsu, V. An estimation and application of the human cortical magnification factor. Exp Brain Res 37, 495–510 (1979). https://doi.org/10.1007/BF00236819

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00236819

Key words

Navigation