Skip to main content

Advertisement

Log in

Face activated neurodynamic cortical networks

  • Special Issue - Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Previous neuroimaging studies have shown that complex visual stimuli, such as faces, activate multiple brain regions, yet little is known on the dynamics and complexity of the activated cortical networks during the entire measurable evoked response. In this study, we used simulated and face-evoked empirical MEG data from an oddball study to investigate the feasibility of accurate, efficient, and reliable spatio-temporal tracking of cortical pathways over prolonged time intervals. We applied a data-driven, semiautomated approach to spatio-temporal source localization with no prior assumptions on active cortical regions to explore non-invasively face-processing dynamics and their modulation by task. Simulations demonstrated that the use of multi-start downhill simplex and data-driven selections of time intervals submitted to the Calibrated Start Spatio-Temporal (CSST) algorithm resulted in improved accuracy of the source localization and the estimation of the onset of their activity. Locations and dynamics of the identified sources indicated a distributed cortical network involved in face processing whose complexity was task dependent. This MEG study provided the first non-invasive demonstration, agreeing with intracranial recordings, of an early onset of the activity in the fusiform face gyrus (FFG), and that frontal activation preceded parietal for responses elicited by target faces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aine CJ, Supek S, George JS (1995) Temporal dynamics of visual-evoked neuromagnetic sources: effects of stimulus parameters and selective attention. Int J Neurosci 80:79–104

    Article  PubMed  CAS  Google Scholar 

  2. Aine CJ, Supek S, George JS, Ranken D, Lewine J, Sanders J, Best E, Tiee W, Wood CC (1996) Retinotopic organization of human visual cortex: departures from the classical model. Cereb Cortex 6:354–361

    Article  PubMed  CAS  Google Scholar 

  3. Aine C, Huang M, Stephen J, Christner R (2000) Multistart algorithms for MEG empirical data analysis reliably characterize locations and time courses of multiple sources. NeuroImage 12:159–172

    Article  PubMed  CAS  Google Scholar 

  4. Allison T, Puce A, Spencer DD, McCarthy G (1999) Electrophysiological studies of human face perception. I: potentials generated in occipitotemporal cortex by face and non-face stimuli. Cereb Cortex 9:415–430

    Article  PubMed  CAS  Google Scholar 

  5. Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000) Brodmann’s areas 17 and 18 brought into stereotaxic space—where and how variable? NeuroImage 11:66–84

    Article  PubMed  CAS  Google Scholar 

  6. Barbeau EJ, Taylor MJ, Regis J, Marquis P, Chauvel P, Liégeois-Chauvel C (2008) Spatio temporal dynamics of face recognition. Cereb Cortex 18:997–1009

    Article  PubMed  Google Scholar 

  7. Baudena P, Halgren E, Heit G, Clarke JM (1995) Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalogr Clin Neurophysiol 94:251–264

    Article  PubMed  CAS  Google Scholar 

  8. Bentin S, Allison T, Puce A, Perez E, McCarthy G (1996) Electrophysiological studies of face perception in humans. J Cogn Neurosci 8:551–565

    Article  PubMed  Google Scholar 

  9. Clark VP, Keil K, Maisog JM, Courtney S, Ungerleider LG, Haxby JV (1996) Functional magnetic resonance imaging of human visual cortex during face matching: a comparison with positron emission tomography. NeuroImage 4:1–15

    Article  PubMed  CAS  Google Scholar 

  10. Deffke I, Sander T, Heidenreich J, Sommer W, Curio G, Trahms L, Lueschow A (2007) MEG/EEG sources of the 170-ms response to faces are co-localized in the fusiform gyrus. NeuroImage 35:1495–1501

    Article  PubMed  Google Scholar 

  11. Halgren E, Baudena P, Heit G, Clarke JM, Marinkovic K, Clarke M (1994) Spatio-temporal stages in face and word processing. 1. Depth-recorded potentials in the human occipital, temporal and parietal lobes. J Physiol Paris 88:1–50

    Article  PubMed  CAS  Google Scholar 

  12. Halgren E, Baudena P, Heit G, Clarke JM, Marinkovic K, Chauvel P, Clarke M (1994) Spatio-temporal stages in face and word processing. 2. Depth-recorded potentials in the human frontal and Rolandic cortices. J Physiol Paris 88:51–80

    Article  PubMed  CAS  Google Scholar 

  13. Halgren E, Baudena P, Clarke JM, Heit G, Liégeois C, Chauvel P, Musolino A (1995) Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroencephalogr Clin Neurophysiol 94:191–220

    Article  PubMed  CAS  Google Scholar 

  14. Halgren E, Baudena P, Clarke JM, Heit G, Marinkovic K, Devaux B, Vignal JP, Biraben A (1995) Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroencephalogr Clin Neurophysiol 94:229–250

    Article  PubMed  CAS  Google Scholar 

  15. Halgren E, Marinkovic K, Chauvel P (1998) Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr Clin Neurophysiol 106:156–164

    Article  PubMed  CAS  Google Scholar 

  16. Halgren E, Raij T, Marinkovic K, Jousmäki V, Hari R (2000) Cognitive response profile of the human fusiform face area as determined by MEG. Cereb Cortex 10:69–81

    Article  PubMed  CAS  Google Scholar 

  17. Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  Google Scholar 

  18. Haxby JV, Ungerleider LG, Clark VP, Schouten JL, Hoffman EA, Martin A (1999) The effect of face inversion on activity in human neural systems for face and object perception. Neuron 22:189–199

    Article  PubMed  CAS  Google Scholar 

  19. Herrmann MJ, Ehlis AC, Ellgring H, Fallgatter AJ (2005) Early stages (P100) of face perception in humans as measured with event-related potentials (ERPs). J Neural Transm 112:1073–1081

    Article  PubMed  CAS  Google Scholar 

  20. Hillebrand A, Barnes GR (2002) A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. Neuroimage 16:638–650

    Article  PubMed  CAS  Google Scholar 

  21. Huang M, Aine CJ, Supek S, Best E, Ranken D, Flynn ER (1998) Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography. Electroencephalogr Clin Neurophysiol 108:32–44

    Article  PubMed  CAS  Google Scholar 

  22. Huang MX, Lee RR, Miller GA, Thoma RJ, Hanlon FM, Paulson KM, Martin K, Harrington DL, Weisend MP, Edgar JC, Canive JM (2005) A parietal-frontal network studied by somatosensory oddball MEG responses, and its cross-modal consistency. NeuroImage 28:99–114

    Article  PubMed  Google Scholar 

  23. Ishai A, Ungerleider LG, Martin A, Schouten JL, Haxby JV (1999) Distributed representation of objects in the human ventral visual pathway. Proc Natl Acad Sci USA 96:9379–9384

    Article  PubMed  CAS  Google Scholar 

  24. Itier RJ, Herdman AT, George N, Cheyne D, Taylor MJ (2006) Inversion and contrast-reversal effects on face processing assessed by MEG. Brain Res 1115:108–120

    Article  PubMed  CAS  Google Scholar 

  25. Josef Golubic S, Susac A, Grilj V, Huonker R, Haueisen J, Supek S (2011) Size matters: MEG empirical and simulation study on source localization of the earliest visual activity in the occipital cortex. Med Bio Eng Comput, this special issue

  26. Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311

    PubMed  CAS  Google Scholar 

  27. Lee D, Simos P, Sawrie SM, Martin RC, Knowlton RC (2005) Dynamic brain activation patterns for face recognition: a magnetoencephalography study. Brain Topogr 18:19–26

    Article  PubMed  Google Scholar 

  28. Lewis S, Thoma RJ, Lanoue MD, Miller GA, Heller W, Edgar C, Huang M, Weisend MP, Irwin J, Paulson K, Canive JM (2003) Visual processing of facial affect. NeuroReport 14:1841–1845

    Article  PubMed  Google Scholar 

  29. Linkenkaer-Hansen K, Palva JM, Sams M, Hietanen JK, Aronen HJ, Ilmoniemi RJ (1998) Face-selective processing in human extrastriate cortex around 120 ms after stimulus onset revealed by magneto- and electroencephalography. Neurosci Lett 253:147–150

    Article  PubMed  CAS  Google Scholar 

  30. Liu J, Higuchi M, Marantz A, Kanwisher N (2000) The selectivity of the occipitotemporal M170 for faces. NeuroReport 11:337–341

    Article  PubMed  CAS  Google Scholar 

  31. Liu J, Harris A, Kanwisher N (2002) Stages of processing in face perception: an MEG study. Nat Neurosci 5:910–916

    Article  PubMed  CAS  Google Scholar 

  32. Lu ST, Hämäläinen MS, Hari R, Ilmoniemi RJ, Lounasmaa OV, Sams M, Vilkman V (1991) Seeing faces activates three separate areas outside the occipital visual cortex in man. Neuroscience 43:287–290

    Article  PubMed  CAS  Google Scholar 

  33. Lütkenhöner B (1998) Dipole separability in a neuromagnetic source analysis. IEEE Trans Biomed Eng 45:572–581

    Article  PubMed  Google Scholar 

  34. McCarthy G, Puce A, Belger A, Allison T (1999) Electrophysiological studies of human face perception. II: response properties of face-specific potentials generated in occipitotemporal cortex. Cereb Cortex 9:431–444

    Article  PubMed  CAS  Google Scholar 

  35. Meeren HK, Hadjikhani N, Ahlfors SP, Hämäläinen MS, de Gelder B (2008) Early category-specific cortical activation revealed by visual stimulus inversion. PLoS One 3:e3503

    Article  PubMed  Google Scholar 

  36. Ó Scalaidhe SP, Wilson FAW, Goldman-Rakic PS (1997) Areal segregation of face-processing neurons in prefrontal cortex. Science 278:1135–1138

    Article  PubMed  Google Scholar 

  37. Ó Scalaidhe SP, Wilson FAW, Goldman-Rakic PS (1999) Face-selective neurons during passive viewing and working memory performance of rhesus monkeys: evidence for intrinsic specialization of neuronal coding. Cereb Cortex 9:459–475

    Article  Google Scholar 

  38. Perrett DI, Mistlin AJ, Chitty AJ, Smith PA, Potter DD, Broennimann R, Harries M (1988) Specialized face processing and hemispheric asymmetry in man and monkey: evidence from single unit and reaction time studies. Behav Brain Res 29:245–258

    Article  PubMed  CAS  Google Scholar 

  39. Puce A, Allison T, Gore JC, McCarthy G (1995) Face-sensitive regions in human extrastriate cortex studied by functional MRI. J Neurophysiol 74:1192–1199

    PubMed  CAS  Google Scholar 

  40. Puce A, Allison T, McCarthy G (1999) Electrophysiological studies of human face perception. III: effects of top-down processing on face-specific potentials. Cereb Cortex 9:445–458

    Article  PubMed  CAS  Google Scholar 

  41. Ranken DM, Best ED, Stephen JM, Schmidt DM, George JS, Wood CC, Huang M (2002) MEG/EEG forward and inverse modeling using MRIVIEW. In: Nowak H, Haueisen J, Giebler F, Huonker R (eds) Biomag 2002. Proceedings of the 13th international conference on biomagnetism, VDE Verlag, Berlin, pp 785–787

  42. Salisbury DF, Rutherford B, Shenton ME, McCarley RW (2001) Button-pressing affects P300 amplitude and scalp topography. Clin Neurophysiol 112:1676–1684

    Article  PubMed  CAS  Google Scholar 

  43. Sams M, Hietanen JK, Hari R, Ilmoniemi RJ, Lounasmaa OV (1997) Face-specific responses from the human inferior occipito-temporal cortex. Neuroscience 77:49–55

    Article  PubMed  CAS  Google Scholar 

  44. Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32:11–22

    Article  PubMed  CAS  Google Scholar 

  45. Schweinberger SR, Kaufmann JM, Moratti S, Keil A, Burton AM (2007) Brain responses to repetitions of human and animal faces, inverted faces, and objects: an MEG study. Brain Res 1184:226–233

    Article  PubMed  CAS  Google Scholar 

  46. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893

    Article  PubMed  CAS  Google Scholar 

  47. Sergent J, Ohta S, MacDonald B (1992) Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain 115:15–36

    Article  PubMed  Google Scholar 

  48. Stenbacka L, Vanni S, Uutela K, Hari R (2002) Comparison of minimum current estimate and dipole modeling in the analysis of simulated activity in the human visual cortices. NeuroImage 16:936–943

    Article  PubMed  Google Scholar 

  49. Stephen JM, Aine CJ, Ranken D, Hudson D, Shih JJ (2003) Multidipole analysis of simulated epileptic spikes with real background activity. J Clin Neurophysiol 20:1–16

    Article  PubMed  CAS  Google Scholar 

  50. Sugase Y, Yamane S, Ueno S, Kawano K (1999) Global and fine information coded by single neurons in the temporal visual cortex. Nature 400:869–873

    Article  PubMed  CAS  Google Scholar 

  51. Supek S, Aine CJ (1993) Simulation studies of multiple dipole neuromagnetic source localization: model order and limits of source resolution. IEEE Trans Biomed Eng 40:529–540

    Article  PubMed  CAS  Google Scholar 

  52. Supek S, Aine CJ (1997) Spatio-temporal modeling of neuromagnetic data: I. Multi-source location versus time-course estimation accuracy. Hum Brain Mapp 5:139–153

    Article  PubMed  CAS  Google Scholar 

  53. Supek S, Aine CJ (1997) Temporal dynamics of multiple neuromagnetic sources: simulation and empirical studies. Biomed Tech 42(Suppl 1):64–67

    Google Scholar 

  54. Supek S, Aine CJ, Ranken D, Best E, Flynn ER, Wood CC (1999) Single vs. paired visual stimulation: superposition of early neuromagnetic responses and retinotopy in extrastriate cortex in humans. Brain Res 830:43–55

    Article  PubMed  CAS  Google Scholar 

  55. Supek S, Stingl K, Josef Golubic S, Susac A, Ranken D (2006) Optimal spatio-temporal matrix subdivision for cortical neurodynamics estimation. In: Weinberg H (ed) Biomag 2006. 15th international conference on biomagnetism book of abstracts, Vancouver, p 242

  56. Susac A, Ilmoniemi RJ, Pihko E, Supek S (2004) Neurodynamic studies on emotional and inverted faces in an oddball paradigm. Brain Topogr 16:265–268

    Article  PubMed  Google Scholar 

  57. Susac A, Ilmoniemi RJ, Pihko E, Nurminen J, Supek S (2008) Early dissociation of face and object processing: a magnetoencephalographic study. Hum Brain Mapp 30:917–927

    Article  Google Scholar 

  58. Susac A, Ilmoniemi RJ, Pihko E, Ranken D, Supek S (2010) Early cortical responses are sensitive to changes in face stimuli. Brain Res 1346:155–164

    Article  PubMed  CAS  Google Scholar 

  59. Swithenby SJ, Bailey AJ, Bräutigam S, Josephs OE, Jousmäki V, Tesche CD (1998) Neural processing of human faces: a magnetoencephalographic study. Exp Brain Res 118:501–510

    Article  PubMed  CAS  Google Scholar 

  60. Tanskanen T, Näsänen R, Montez T, Päällysaho J, Hari R (2005) Face recognition and cortical responses show similar sensitivity to noise spatial frequency. Cereb Cortex 15:526–534

    Article  PubMed  Google Scholar 

  61. Tarkiainen A, Cornelissen PL, Salmelin R (2002) Dynamics of visual feature analysis and object-level processing in face versus letter-string perception. Brain 125:1125–1136

    Article  PubMed  CAS  Google Scholar 

  62. Taulu S, Kajola M (2005) Presentation of electromagnetic multichannel data: the signal space separation method. J Appl Phys 97:124905–124910

    Article  Google Scholar 

  63. Taulu S, Simola J (2006) Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol 51:1759–1768

    Article  PubMed  CAS  Google Scholar 

  64. Taylor MJ, George N, Ducorps A (2001) Magnetoencephalographic evidence of early processing of direction of gaze in humans. Neurosci Lett 316:173–177

    Article  PubMed  CAS  Google Scholar 

  65. Watanabe S, Kakigi R, Koyama S, Kirino E (1999) Human face perception traced by magneto- and electro-encephalography. Brain Res Cogn Brain Res 8:125–142

    Article  PubMed  CAS  Google Scholar 

  66. Watanabe S, Kakigi R, Puce A (2003) The spatiotemporal dynamics of the face inversion effect: a magneto- and electro-encephalographic study. Neuroscience 116:879–895

    Article  PubMed  CAS  Google Scholar 

  67. Yamazaki T, Kamijo K, Kiyuna T, Takaki Y, Kuroiwa Y (2001) Multiple dipole analysis of visual event-related potentials during oddball paradigm with silent counting. Brain Topogr 13:161–168

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Croatian Ministry of Science, Education, and Sport (grant 199-1081870-1252), National Foundation for Science, Higher Education and Technological Development of the Republic of Croatia, and the Centre for International Mobility, Finland. We thank Jussi Nurminen and Milan Rados for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Susac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Susac, A., Ilmoniemi, R.J., Ranken, D. et al. Face activated neurodynamic cortical networks. Med Biol Eng Comput 49, 531–543 (2011). https://doi.org/10.1007/s11517-011-0740-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0740-4

Keywords

Navigation