Skip to main content

Advertisement

Log in

Radiofrequency ablation and thyroid nodules: updated systematic review

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

In the thyroid gland, radiofrequency ablation (RFA) is being applied to both benign nodules and cancers internationally, while interest is also growing in the West. Benign thyroid nodules (BTNs) may be candidates for intervention when symptoms develop. For differentiated thyroid cancers (DTC), surgery is currently the first-line treatment. However, for candidates with high surgical risk or those who refuse to undergo repeated surgery, newer techniques such as RFA are an option. Surgery is associated with complications including hypothyroidism, voice change, hypocalcemia, and a scar. RFA has been used in Asian and European institutions as an alternative to surgery, but is relatively new in North America. Although RFA is not associated with significant complications, few randomized control trials have assessed its efficacy. The studies to date suggest a low rate of severe complications and a small need for thyroid hormone replacement following RFA. Further large-scale studies focusing on a Western population are needed. The aim of this review is to evaluate the evidence with respect to the current studies and data about the safety and efficacy of radiofrequency ablation for the management of BTNs and DTC.

Methods

We systematically searched the PubMed/MEDLINE, EMBASE, Clinical Queries, and Web of Science databases, for articles published up to April 30th, 2020.

Results

Total of 75 studies that met the inclusion criteria were included in the review. Thirty-five studies focused on RFA use for solid nodules, 12 studies on predominantly cystic nodules, 10 for autonomously functioning thyroid nodules, and 18 studied were published on differentiated thyroid cancer.

Conclusions

RFA seems to be an effective and safe alternative to surgery in high-risk surgical patients with thyroid cancers and for selected BTNs. Additional trials with longer follow-up in North American patients are needed to validate its full role in the armamentarium of thyroid ologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. H. Dobnig, K. Amrein, Monopolar radiofrequency ablation of thyroid nodules: a prospective austrian single-center study. Thyroid 28(4), 472–480 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Y. Guang et al. Patient satisfaction of radiofrequency ablation for symptomatic benign solid thyroid nodules: our experience for 2-year follow up. BMC Cancer 19(1), 147 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  3. L. Hegedus, Thyroid ultrasonography as a screening tool for thyroid disease. Thyroid 14(11), 879–880 (2004)

    Article  PubMed  Google Scholar 

  4. Y. Ito et al. Papillary microcarcinoma of the thyroid: how should it be treated?. World J. Surg. 28(11), 1115–1121 (2004)

    Article  PubMed  Google Scholar 

  5. Y. Ito et al. An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid. Thyroid 13(4), 381–387 (2003)

    Article  PubMed  Google Scholar 

  6. S.Y. Su, S. Grodski, J.W. Serpell, Hypothyroidism following hemithyroidectomy: a retrospective review. Ann. Surg. 250(6), 991–994 (2009)

    Article  PubMed  Google Scholar 

  7. S.S. Chen et al. Optimizing levothyroxine dose adjustment after thyroidectomy with a decision tree. J. Surg. Res. 244, 102–106 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. E.K. Alexander et al. Natural history of benign solid and cystic thyroid nodules. Ann. Intern. Med. 138(4), 315–318 (2003)

    Article  PubMed  Google Scholar 

  9. A. Bergenfelz et al. Complications to thyroid surgery: results as reported in a database from a multicenter audit comprising 3,660 patients. Langenbecks Arch. Surg. 393(5), 667–673 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. L. Hegedus, Therapy: a new nonsurgical therapy option for benign thyroid nodules?. Nat. Rev. Endocrinol. 5, 476–478 (2009).

    Article  PubMed  Google Scholar 

  11. H. Rhim et al. Essential techniques for successful radio-frequency thermal ablation of malignant hepatic tumors. Radiographics 21(Spec No), S17–S35 (2001)

    Article  PubMed  Google Scholar 

  12. L. Buscarini, S. Rossi, Technology for radiofrequency thermal ablation of liver tumors. Semin. Laparosc. Surg. 4(2), 96–101 (1997)

    CAS  PubMed  Google Scholar 

  13. A. Barile et al. Interventional radiology of the thyroid gland: critical review and state of the art. Gland Surg. 7(2), 132–146 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  14. J. Lee et al. Feasibility of adjustable electrodes for radiofrequency ablation of benign thyroid nodules. Korean J. Radiol. 21(3), 377–383 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  15. J.H. Kim et al. 2017 Thyroid radiofrequency ablation guideline: korean society of thyroid radiology. Korean J. Radiol. 19(4), 632–655 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  16. H. Gharib et al. Clinical review: nonsurgical, image-guided, minimally invasive therapy for thyroid nodules. J. Clin. Endocrinol. Metab. 98(10), 3949–3957 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. E. Papini, C.M. Pacella, L. Hegedus, Diagnosis of endocrine disease: thyroid ultrasound (US) and US-assisted procedures: from the shadows into an array of applications. Eur. J. Endocrinol. 170(4), R133–R146 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. Y. Che et al. Treatment of benign thyroid nodules: comparison of surgery with radiofrequency ablation. Am. J. Neuroradiol. 36(7), 1321–1325 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J.H. Baek et al. Benign predominantly solid thyroid nodules: prospective study of efficacy of sonographically guided radiofrequency ablation versus control condition. Am. J. Roentgenol. 194(4), 1137–1142 (2010)

    Article  Google Scholar 

  20. J.Y. Huh et al. Symptomatic benign thyroid nodules: efficacy of additional radiofrequency ablation treatment session-prospective randomized study. Radiology 263(3), 909–916 (2012)

    Article  PubMed  Google Scholar 

  21. N. Arora et al. Do benign thyroid nodules have malignant potential? An evidence-based review. World J. Surg. 32(7), 1237–1246 (2008)

    Article  PubMed  Google Scholar 

  22. C.C. Wang et al. A large multicenter correlation study of thyroid nodule cytopathology and histopathology. Thyroid 21(3), 243–251 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  23. S.M. Ha et al. Does radiofrequency ablation induce neoplastic changes in benign thyroid nodules: a preliminary study. Endocrinol. Metab. (Seoul.) 34(2), 169–178 (2019)

    Article  CAS  Google Scholar 

  24. C. Dobrinja et al. Surgical and pathological changes after radiofrequency ablation of thyroid nodules. Int. J. Endocrinol. 2015, 576576 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  25. F. Garino et al. Long-lasting shrinkage of thyroid nodules after radiofrequency ablation. A 2 years prospective study. Thyroid 25, A172 (2015)

    Google Scholar 

  26. R. Cervelli et al. Radiofrequency ablation in the treatment of benign thyroid nodules: an efficient and safe alternative to surgery. J. Vasc. Interv. Radiol. 28(10), 1400–1408 (2017)

    Article  PubMed  Google Scholar 

  27. M. Deandrea et al. Long-lasting thyroid nodules shrinkage after radiofrequency ablation at 1 year follow-up on a prospective study. Eur. Thyroid J. 3, 135 (2014)

    Google Scholar 

  28. M. Deandrea et al. US-guided percutaneous radiofrequency thermal ablation for the treatment of solid benign hyperfunctioning or compressive thyroid nodules. Ultrasound Med. Biol. 34(5), 784–791 (2008)

    Article  PubMed  Google Scholar 

  29. M. Deandrea et al. Efficacy and safety of radiofrequency ablation versus observation for nonfunctioning benign thyroid nodules: a randomized controlled international collaborative trial. Thyroid 25(8), 890–896 (2015)

    Article  PubMed  Google Scholar 

  30. S. Spiezia et al. Thyroid nodules and related symptoms are stably controlled two years after radiofrequency thermal ablation. Thyroid 19(3), 219–225 (2009)

    Article  PubMed  Google Scholar 

  31. J. Aldea Martínez et al. Radiofrequency ablation of thyroid nodules: a long-term prospective study of 24 patients. J. Vasc. Interv. Radiol. 30(10), 1567–1573 (2019)

    Article  PubMed  Google Scholar 

  32. H.S. Ahn et al. Radiofrequency ablation of benign thyroid nodules: evaluation of the treatment efficacy using ultrasonography. Ultrasonography 35(3), 244–252 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  33. O. Hamidi et al. Outcomes of radiofrequency ablation therapy for large benign thyroid nodules: a Mayo Clinic Case Series. Mayo Clin. Proc. 93(8), 1018–1025 (2018)

    Article  PubMed  Google Scholar 

  34. A. Ben Hamou et al. Safety and efficacy of thermal ablation (radiofrequency and laser): should we treat all types of thyroid nodules?. Int. J. Hyperth. 36(1), 666–676 (2019)

    Google Scholar 

  35. M. Sambo Salas et al. Efficacy of radiofrequency ablation (RFA) in clinical, morphological and functional control of large, solid, symptomatic and benign thyroid nodules: preliminary outcomes of a spanish multicenter study after the first month of follow-up. Thyroid 25, A173 (2015)

    Google Scholar 

  36. H. Dobnig, K. Amrein, Monopolar radiofrequency ablation of thyroid nodules: a prospective austrian single-center study. Thyroid 28(4), 472–480 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. G. Mauri et al. Benign thyroid nodules treatment using percutaneous laser ablation (PLA) and radiofrequency ablation (RFA). Int. J. Hyperth. 33(3), 295–299 (2017)

    Article  CAS  Google Scholar 

  38. S.L. Jung et al. Efficacy and safety of radiofrequency ablation for benign thyroid nodules: a prospective multicenter study. Korean J. Radiol. 19(1), 167–174 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  39. W.K. Jeong et al. Radiofrequency ablation of benign thyroid nodules: safety and imaging follow-up in 236 patients. Eur. Radiol. 18(6), 1244–1250 (2008)

    Article  PubMed  Google Scholar 

  40. M.U. Ugurlu et al. Radiofrequency ablation of benign symptomatic thyroid nodules: prospective safety and efficacy study. World J. Surg. 39(4), 961–968 (2015)

    Article  PubMed  Google Scholar 

  41. W.W. Yue et al. Radiofrequency ablation vs. microwave ablation for patients with benign thyroid nodules: a propensity score matching study. Endocrine 55(2), 485–495 (2017)

    Article  CAS  PubMed  Google Scholar 

  42. H.K. Lim et al. Radiofrequency ablation of benign non-functioning thyroid nodules: 4-year follow-up results for 111 patients. Eur. Radiol. 23(4), 1044–1049 (2013)

    Article  PubMed  Google Scholar 

  43. X.L. Li et al. Treatment efficacy and safety of ultrasound-guided percutaneous bipolar radiofrequency ablation for benign thyroid nodules. Br. J. Radiol. 89(1059), 20150858 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  44. R. Cesareo et al. Prospective study of effectiveness of ultrasound-guided radiofrequency ablation versus control group in patients affected by benign thyroid nodules. J. Clin. Endocrinol. Metab. 100(2), 460–466 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. S. Bernardi et al. Radiofrequency ablation compared to surgery for the treatment of benign thyroid nodules. Int. J. Endocrinol. 2014, 934595 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  46. R. Valcavi, P. Tsamatropoulos, Health-related quality of life after percutaneous radiofrequency ablation of cold, solid, benign thyroid nodules: A 2-year follow-up study in 40 patients. Endocr. Pract. 21(8), 887–896 (2015)

    Article  PubMed  Google Scholar 

  47. J.S. Sim et al. Radiofrequency ablation of benign thyroid nodules: depicting early sign of regrowth by calculating vital volume. Int. J. Hyperth. 33(8), 905–910 (2017)

    Google Scholar 

  48. K.D. Kohlhase et al. Bipolar radiofrequency ablation of benign thyroid nodules using a multiple overlapping shot technique in a 3-month follow-up. Int. J. Hyperth. 32(5), 511–516 (2016)

    Article  Google Scholar 

  49. S. Jawad et al. Ultrasound-guided radiofrequency ablation (RFA) of benign symptomatic thyroid nodules - initial UK experience. Br. J. Radiol. 92(1098), 20190026 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  50. M. Deandrea et al. Long-term efficacy of a single session of RFA for benign thyroid nodules: a longitudinal 5-year observational study. J. Clin. Endocrinol. Metab. 104(9), 3751–3756 (2019)

    Article  PubMed  Google Scholar 

  51. G. Turtulici et al. Percutaneous radiofrequency ablation of benign thyroid nodules assisted by a virtual needle tracking system. Ultrasound Med. Biol. 40(7), 1447–1452 (2014)

    Article  PubMed  Google Scholar 

  52. P. Rabuffi et al. Treatment of thyroid nodules with radiofrequency: a 1-year follow-up experience. J. Ultrasound 22(2), 193–199 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  53. F. Feroci et al. Radiofrequency thermal ablation of benign thyroid nodules: the correlation between ultrasound nodule characteristics and results. Surg. Innov. 27, 1553350620913134 (2020)

    Article  Google Scholar 

  54. R. Cesareo et al. Laser ablation versus radiofrequency ablation for benign non-functioning thyroid nodules: six-month results of a randomized, parallel, open-label, trial (LARA trial). Thyroid 30(6), 847–856 (2020)

    Article  PubMed  Google Scholar 

  55. Y. Korkusuz et al. Thermal ablation of thyroid nodules: are radiofrequency ablation, microwave ablation and high intensity focused ultrasound equally safe and effective methods?. Eur. Radiol. 28(3), 929–935 (2018)

    Article  PubMed  Google Scholar 

  56. C.K. Zhao et al. Factors associated with initial incomplete ablation for benign thyroid nodules after radiofrequency ablation: first results of CEUS evaluation. Clin. Hemorheol. Microcirc. 65(4), 393–405 (2017)

    Article  PubMed  Google Scholar 

  57. M. Deandrea et al. Radiofrequency ablation for benign thyroid nodules according to different ultrasound features: an Italian multicentre prospective study. Eur. J. Endocrinol. 180(1), 79–87 (2019)

    Article  CAS  PubMed  Google Scholar 

  58. D. Cui et al. Efficacy and safety of a combination of hydrodissection and radiofrequency ablation therapy for benign thyroid nodules larger than 2 cm: a retrospective study. J. Cancer Res. Ther. 15(2), 386–393 (2019)

    CAS  PubMed  Google Scholar 

  59. J.H. Baek et al. Radiofrequency versus ethanol ablation for treating predominantly cystic thyroid nodules: a randomized clinical trial. Korean J. Radiol. 16(6), 1332–1340 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  60. J.Y. Sung et al. Optimum first-line treatment technique for benign cystic thyroid nodules: ethanol ablation or radiofrequency ablation?. Am. J. Roentgenol. 196(2), W210–W214 (2011)

    Article  Google Scholar 

  61. Y.S. Kim et al. Radiofrequency ablation of benign cold thyroid nodules: initial clinical experience. Thyroid 16(4), 361–367 (2006)

    Article  PubMed  Google Scholar 

  62. E. Aysan et al. Single-session radiofrequency ablation on benign thyroid nodules: a prospective single center study radiofrequency ablation on thyroid. Langenbecks Arch. Surg. 401(3), 357–363 (2016)

    Article  PubMed  Google Scholar 

  63. H. Dobnig et al. Radiofrequency ablation of solid and cystic thyroid nodules: experiences by an Austrian endocrinologist in private practice. Endocr. Rev. 38(3), (2020). https://endo.confex.com/endo/2017endo/meetingapp.cgi/Paper/29744

  64. M.J. Hong et al. Radiofrequency ablation is a thyroidfunction-preserving treatment for patients with bilateral benign thyroid nodules. Eur. Thyroid J. 3, 141 (2014)

    Google Scholar 

  65. N.L. Vuong et al. Radiofrequency ablation for benign thyroid nodules: 1-year follow-up in 184 patients. World J. Surg. 43(10), 2447–2453 (2019)

    Article  PubMed  Google Scholar 

  66. J.Y. Sung et al. Single-session treatment of benign cystic thyroid nodules with ethanol versus radiofrequency ablation: a prospective randomized study. Radiology 269(1), 293–300 (2013)

    Article  PubMed  Google Scholar 

  67. J.H. Lee et al. Radiofrequency ablation (RFA) of benign thyroid nodules in patients with incompletely resolved clinical problems after ethanol ablation (EA). World J. Surg. 34(7), 1488–1493 (2010)

    Article  PubMed  Google Scholar 

  68. H.M. Yoon et al. Combination therapy consisting of ethanol and radiofrequency ablation for predominantly cystic thyroid nodules. Am. J. Neuroradiol. 35(3), 582–586 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. R. Cesareo et al. Nodule size as predictive factor of efficacy of radiofrequency ablation in treating autonomously functioning thyroid nodules. Int. J. Hyperth. 34(5), 617–623 (2018)

    Article  CAS  Google Scholar 

  70. J.Y. Sung et al. Radiofrequency ablation for autonomously functioning thyroid nodules: a multicenter study. Thyroid 25(1), 112–117 (2015)

    Article  CAS  PubMed  Google Scholar 

  71. R. Cervelli et al. Comparison between radioiodine therapy and single-session radiofrequency ablation of autonomously functioning thyroid nodules: a retrospective study. Clin. Endocrinol. 90(4), 608–616 (2019)

    Article  CAS  Google Scholar 

  72. A. Faggiano et al. Thyroid nodules treated with percutaneous radiofrequency thermal ablation: a comparative study. J. Clin. Endocrinol. Metab. 97(12), 4439–4445 (2012)

    Article  CAS  PubMed  Google Scholar 

  73. J.H. Baek et al. Radiofrequency ablation for the treatment of autonomously functioning thyroid nodules. World J. Surg. 33(9), 1971–1977 (2009)

    Article  PubMed  Google Scholar 

  74. S. Bernardi et al. 12-month efficacy of a single radiofrequency ablation on autonomously functioning thyroid nodules. Endocrine 57(3), 402–408 (2017)

    Article  CAS  PubMed  Google Scholar 

  75. C. Cappelli et al. Radiofrequency ablation of functioning and non-functioning thyroid nodules: a single institution 12-month survey. J. Endocrinol. Investig. 43(4), 477–482 (2019)

    Article  Google Scholar 

  76. J.H. Baek et al. Locoregional control of metastatic well-differentiated thyroid cancer by ultrasound-guided radiofrequency ablation. Am. J. Roentgenol. 197(2), W331–W336 (2011)

    Article  Google Scholar 

  77. S.J. Lee et al. Radiofrequency ablation to treat loco-regional recurrence of well-differentiated thyroid carcinoma. Korean J. Radiol. 15(6), 817–826 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  78. F.D. Gilliland et al. Prognostic factors for thyroid carcinoma. A population-based study of 15,698 cases from the Surveillance, Epidemiology and End Results (SEER) program 1973–1991. Cancer 79(3), 564–573 (1997)

    Article  CAS  PubMed  Google Scholar 

  79. N.E. Gulcelik, M.A. Gulcelik, B. Kuru, Risk of malignancy in patients with follicular neoplasm: predictive value of clinical and ultrasonographic features. Arch. Otolaryngol. Head. Neck Surg. 134(12), 1312–1315 (2008)

    Article  PubMed  Google Scholar 

  80. S.M. Ha et al. Radiofrequency ablation of small follicular neoplasms: initial clinical outcomes. Int. J. Hyperth. 33(8), 931–937 (2017)

    Google Scholar 

  81. S.Y. Jeong et al. Radiofrequency ablation of primary thyroid carcinoma: efficacy according to the types of thyroid carcinoma. Int. J. Hyperth. 34(5), 611–616 (2018)

    Article  Google Scholar 

  82. B.R. Haugen et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1), 1–133 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  83. M. Zhang et al. Ultrasound-guided radiofrequency ablation versus surgery for low-risk papillary thyroid microcarcinoma: results of over 5 years’ follow-up. Thyroid 30(3), 408–417 (2020)

    Article  PubMed  Google Scholar 

  84. J.H. Kim et al. Radiofrequency ablation of low-risk small papillary thyroidcarcinoma: preliminary results for patients ineligible for surgery. Int. J. Hyperth. 33(2), 212–219 (2017)

    Article  Google Scholar 

  85. H.Y. Kim et al. Primary papillary thyroid carcinoma previously treated incompletely with radiofrequency ablation. J. Cancer Res. Ther. 6(3), 310–312 (2010)

    Article  PubMed  Google Scholar 

  86. B. Ma et al. Surgical confirmation of incomplete treatment for primary papillary thyroid carcinoma by percutaneous thermal ablation: a retrospective case review and literature review. Thyroid 28(9), 1134–1142 (2018)

    Article  PubMed  Google Scholar 

  87. H.K. Lim et al. Efficacy and safety of radiofrequency ablation for treating locoregional recurrence from papillary thyroid cancer. Eur. Radiol. 25(1), 163–170 (2015)

    Article  PubMed  Google Scholar 

  88. S. Mazzeo et al. mRECIST criteria to assess recurrent thyroid carcinoma treatment response after radiofrequency ablation: a prospective study. J. Endocrinol. Investig. 41(12), 1389–1399 (2018)

    Article  CAS  Google Scholar 

  89. J.H. Kim et al. Efficacy and safety of radiofrequency ablation for treatment of locally recurrent thyroid cancers smaller than 2 cm. Radiology 276(3), 909–918 (2015)

    Article  PubMed  Google Scholar 

  90. Y. Choi, et al. Comparison of efficacy and complications between radiofrequency ablation and repeat surgery in the treatment of locally recurrent thyroid cancers: a single-center propensity score matching study. Int. J. Hyperth 36(1), 359–367 (2019)

    Article  Google Scholar 

  91. S.R. Chung et al. Longer-term outcomes of radiofrequency ablation for locally recurrent papillary thyroid cancer. Eur. Radiol. 29(9), 4897–4903 (2019)

    Article  PubMed  Google Scholar 

  92. M. Ding et al. Clinical outcomes of ultrasound-guided radiofrequency ablation for the treatment of primary papillary thyroid microcarcinoma. Clin. Radiol. 74(9), 712–717 (2019)

    Article  CAS  PubMed  Google Scholar 

  93. J.M. Monchik et al. Radiofrequency ablation and percutaneous ethanol injection treatment for recurrent local and distant well-differentiated thyroid carcinoma. Ann. Surg. 244(2), 296–304 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  94. K.W. Park et al. Inoperable symptomatic recurrent thyroid cancers: preliminary result of radiofrequency ablation. Ann. Surg. Oncol. 18(9), 2564–2568 (2011)

    Article  PubMed  Google Scholar 

  95. D.E. Dupuy et al. Radiofrequency ablation of regional recurrence from well-differentiated thyroid malignancy. Surgery 130(6), 971–977 (2001)

    Article  CAS  PubMed  Google Scholar 

  96. D. Xu et al. Radiofrequency ablation for postsurgical thyroid removal of differentiated thyroid carcinoma. Am. J. Transl. Res. 8(4), 1876–1885 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  97. H.K. Lim et al. US-guided radiofrequency ablation for low-risk papillary thyroid microcarcinoma: efficacy and safety in a large population. Korean J. Radiol. 20(12), 1653–1661 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  98. J.P. Guenette, J.M. Monchik, D.E. Dupuy, Image-guided ablation of postsurgical locoregional recurrence of biopsy-proven well-differentiated thyroid carcinoma. J. Vasc. Inter. Radiol. 24(5), 672–679 (2013)

    Article  Google Scholar 

  99. J.H. Baek et al. Complications encountered in the treatment of benign thyroid nodules with US-guided radiofrequency ablation: a multicenter study. Radiology 262(1), 335–342 (2012)

    Article  PubMed  Google Scholar 

  100. E.J. Ha, J.H. Baek, J.H. Lee, Ultrasonography-based thyroidal and perithyroidal anatomy and its clinical significance. Korean J. Radiol. 16(4), 749–766 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  101. C. Kim et al. Complications encountered in ultrasonography-guided radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers. Eur. Radiol. 27(8), 3128–3137 (2017)

    Article  PubMed  Google Scholar 

  102. J.H. Baek et al. Locoregional control of metastatic well-differentiated thyroid cancer by ultrasound-guided radiofrequency ablation. Am. J. Roentgenol. 197(2), W331–W336 (2011)

    Article  Google Scholar 

  103. S.J. Stoll et al. Thyroid hormone replacement after thyroid lobectomy. Surgery 146(4), 554–558 (2009). discussion 558–60

    Article  PubMed  Google Scholar 

  104. E.J. Ha et al. Radiofrequency ablation of benign thyroid nodules does not affect thyroid function in patients with previous lobectomy. Thyroid 23(3), 289–293 (2013)

    Article  CAS  PubMed  Google Scholar 

  105. R.C.I. Mateo, J.V. Hennessey, Thyroxine and treatment of hypothyroidism: seven decades of experience. Endocrine 66(1), 10–17 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. M.M. Finucane et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377(9765), 557–567 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  107. S. Rahman et al. Obesity is associated with BRAF V600E-mutated thyroid cancer. Thyroid 30(10), 1518–1527 (2020)

    Article  CAS  PubMed  Google Scholar 

  108. C.C. Li, et al. Influence of body mass index on the clinicopathological features of 13,995 papillary thyroid tumors. J. Endocrinol. Investig 43(9), 1283–1299 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanna Santhanam.

Ethics declarations

Conflict of interest

Author H.M. declares that he has no conflict of interest. Author P.S. declares that he has no conflict of interest. J.O.R. is a consultant for Baxter Health Corp.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, H., Santhanam, P. & Russell, J.O. Radiofrequency ablation and thyroid nodules: updated systematic review. Endocrine 72, 619–632 (2021). https://doi.org/10.1007/s12020-020-02598-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02598-6

Keywords

Navigation