Skip to main content

Advertisement

Log in

Epithelial-to-mesenchymal transition in thyroid cancer: a comprehensive review

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The Metastatic progression of solid tumors, such as thyroid cancer is a complex process which involves various factors. Current understanding on the role of epithelial–mesenchymal transition (EMT) in thyroid carcinomas suggests that EMT is implicated in the progression from follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC) to poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid cancer (ATC). According to the literature, the initiation of the EMT program in thyroid epithelial cells elevates the number of stem cells, which contribute to recurrent and metastatic diseases. The EMT process is orchestrated by a complex network of transcription factors, growth factors, signaling cascades, epigenetic modulations, and the tumor milieu. These factors have been shown to be dysregulated in thyroid carcinomas. Therefore, molecular interferences restoring the expression of tumor suppressors, or thwarting overexpressed oncogenes is a hopeful therapeutic method to improve the treatment of progressive diseases. In this review, we summarize the recent findings on EMT in thyroid cancer focusing on the main role-players and regulators of this process in thyroid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. G. Pellegriti, F. Frasca, C. Regalbuto, S. Squatrito, R. Vigneri, Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J. Cancer Epidemiol. 2013, 965212 (2013). https://doi.org/10.1155/2013/965212

    Article  PubMed  PubMed Central  Google Scholar 

  2. S. Rajabi, M.H. Dehghan, R. Dastmalchi, F. Jalali Mashayekhi, S. Salami, M. Hedayati, The roles and role-players in thyroid cancer angiogenesis. Endocr. J. 66(4), 277–293 (2019). https://doi.org/10.1507/endocrj.EJ18-0537

    Article  CAS  PubMed  Google Scholar 

  3. Y.J. Yang, H.J. Na, M.J. Suh, M.J. Ban, H.K. Byeon, W.S. Kim, J.W. Kim, E.C. Choi, H.J. Kwon, J.W. Chang, Y.W. Koh, Hypoxia induces epithelial–mesenchymal transition in follicular thyroid cancer: involvement of regulation of twist by hypoxia inducible factor-1alpha. Yonsei Med. J. 56(6), 1503–1514 (2015). https://doi.org/10.3349/ymj.2015.56.6.1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Rajabi, M. Hedayati, Medullary thyroid cancer: clinical characteristics and new insights into therapeutic strategies targeting tyrosine kinases. Mol. Diagn. Ther. 21(6), 607–620 (2017). https://doi.org/10.1007/s40291-017-0289-5

    Article  CAS  PubMed  Google Scholar 

  5. H. Katoh, K. Yamashita, T. Enomoto, M. Watanabe, Classification and general considerations of thyroid cancer. Ann. Clin. Pathol. 3(1), 1045 (2015)

    Google Scholar 

  6. K.B. Heiden, A.J. Williamson, M.E. Doscas, J. Ye, Y. Wang, D. Liu, M. Xing, R.A. Prinz, X. Xu, The sonic hedgehog signaling pathway maintains the cancer stem cell self-renewal of anaplastic thyroid cancer by inducing snail expression. J. Clin. Endocrinol. Metab. 99(11), E2178–E2187 (2014). https://doi.org/10.1210/jc.2014-1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Z. Guo, H. Hardin, R.V. Lloyd, Cancer stem-like cells and thyroid cancer. Endocr. Relat. Cancer 21(5), T285–T300 (2014). https://doi.org/10.1530/erc-14-0002

    Article  CAS  PubMed  Google Scholar 

  8. B. Han, H. Cui, L. Kang, X. Zhang, Z. Jin, L. Lu, Z. Fan, Metformin inhibits thyroid cancer cell growth, migration, and EMT through the mTOR pathway. Tumour Biol. 36(8), 6295–6304 (2015). https://doi.org/10.1007/s13277-015-3315-4

    Article  CAS  PubMed  Google Scholar 

  9. V. Vasko, A.V. Espinosa, W. Scouten, H. He, H. Auer, S. Liyanarachchi, A. Larin, V. Savchenko, G.L. Francis, A. de la Chapelle, M. Saji, M.D. Ringel, Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc. Natl Acad. Sci. USA 104(8), 2803–2808 (2007). https://doi.org/10.1073/pnas.0610733104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C. Puppin, D. Fabbro, M. Dima, C. Di Loreto, E. Puxeddu, S. Filetti, D. Russo, G. Damante, High periostin expression correlates with aggressiveness in papillary thyroid carcinomas. J. Endocrinol. 197(2), 401–408 (2008). https://doi.org/10.1677/joe-07-0618

    Article  CAS  PubMed  Google Scholar 

  11. P. Baquero, E. Jimenez-Mora, A. Santos, M. Lasa, A. Chiloeches, TGFbeta induces epithelial–mesenchymal transition of thyroid cancer cells by both the BRAF/MEK/ERK and Src/FAK pathways. Mol. Carcinog. 55(11), 1639–1654 (2016). https://doi.org/10.1002/mc.22415

    Article  CAS  PubMed  Google Scholar 

  12. C. Visciano, F. Liotti, N. Prevete, G. Cali, R. Franco, F. Collina, A. de Paulis, G. Marone, M. Santoro, R.M. Melillo, Mast cells induce epithelial-to-mesenchymal transition and stem cell features in human thyroid cancer cells through an IL-8-Akt-Slug pathway. Oncogene 34(40), 5175–5186 (2015). https://doi.org/10.1038/onc.2014.441

    Article  CAS  PubMed  Google Scholar 

  13. J. Jiang, Y.L. Tang, X.H. Liang, EMT: a new vision of hypoxia promoting cancer progression. Cancer Biol. Ther. 11(8), 714–723 (2011). https://doi.org/10.4161/cbt.11.8.15274

    Article  CAS  PubMed  Google Scholar 

  14. A. Voulgari, A. Pintzas, Epithelial–mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim. Biophys. Acta 1796(2), 75–90 (2009). https://doi.org/10.1016/j.bbcan.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  15. J.P. Thiery, H. Acloque, R.Y. Huang, M.A. Nieto, Epithelial–mesenchymal transitions in development and disease. Cell 139(5), 871–890 (2009). https://doi.org/10.1016/j.cell.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  16. X. Meng, D.H. Kong, N. Li, Z.H. Zong, B.Q. Liu, Z.X. Du, Y. Guan, L. Cao, H.Q. Wang, Knockdown of BAG3 induces epithelial–mesenchymal transition in thyroid cancer cells through ZEB1 activation. Cell Death Dis. 5, e1092 (2014). https://doi.org/10.1038/cddis.2014.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Sarkar, G. Horn, K. Moulton, A. Oza, S. Byler, S. Kokolus, M. Longacre, Cancer development, progression, and therapy: an epigenetic overview. Int. J. Mol. Sci. 14(10), 21087–21113 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  18. S. Al Saleh, L.H. Sharaf, Y.A. Luqmani, Signalling pathways involved in endocrine resistance in breast cancer and associations with epithelial to mesenchymal transition (Review). Int J. Oncol. 38(5), 1197–1217 (2011). https://doi.org/10.3892/ijo.2011.942

    Article  CAS  PubMed  Google Scholar 

  19. J. Huang, H. Li, G. Ren, Epithelial–mesenchymal transition and drug resistance in breast cancer (Review). Int J. Oncol. 47(3), 840–848 (2015). https://doi.org/10.3892/ijo.2015.3084

    Article  CAS  PubMed  Google Scholar 

  20. H. Skovierova, T. Okajcekova, J. Strnadel, E. Vidomanova, E. Halasova, Molecular regulation of epithelial-to-mesenchymal transition in tumorigenesis (Review). Int J. Mol. Med 41(3), 1187–1200 (2018). https://doi.org/10.3892/ijmm.2017.3320

    Article  CAS  PubMed  Google Scholar 

  21. P.W. Derksen, X. Liu, F. Saridin, H. van der Gulden, J. Zevenhoven, B. Evers, J.R. van Beijnum, A.W. Griffioen, J. Vink, P. Krimpenfort, J.L. Peterse, R.D. Cardiff, A. Berns, J. Jonkers, Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10(5), 437–449 (2006). https://doi.org/10.1016/j.ccr.2006.09.013

    Article  CAS  PubMed  Google Scholar 

  22. N. Bezdenezhnykh, N. Semesiuk, O. Lykhova, V. Zhylchuk, Y. Kudryavets, Impact of stromal cell components of tumor microenvironment on epithelial–mesenchymal transition in breast cancer cells. Exp. Oncol. 36(2), 72–78 (2014)

    CAS  PubMed  Google Scholar 

  23. J. Heuberger, W. Birchmeier, Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb. Perspect. Biol. 2(2), a002915 (2010). https://doi.org/10.1101/cshperspect.a002915

    Article  PubMed  PubMed Central  Google Scholar 

  24. S. Heerboth, G. Housman, M. Leary, M. Longacre, S. Byler, K. Lapinska, A. Willbanks, S. Sarkar, EMT and tumor metastasis. Clin. Transl. Med 4, 6 (2015). https://doi.org/10.1186/s40169-015-0048-3

    Article  PubMed  PubMed Central  Google Scholar 

  25. S. Wang, S. Huang, Y.L. Sun, Epithelial–mesenchymal transition in pancreatic cancer: a review. Biomed Res. Int. 2017, 2646148 (2017). https://doi.org/10.1155/2017/2646148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. G. Christofori, New signals from the invasive front. Nature 441(7092), 444–450 (2006). https://doi.org/10.1038/nature04872

    Article  CAS  PubMed  Google Scholar 

  27. K. Jensen, A. Patel, V. Hoperia, A. Larin, A. Bauer, V. Vasko, Dynamic changes in E-cadherin gene promoter methylation during metastatic progression in papillary thyroid cancer. Exp. Ther. Med. 1(3), 457–462 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. Sponziello, F. Rosignolo, M. Celano, V. Maggisano, V. Pecce, R.F. De Rose, G.E. Lombardo, C. Durante, S. Filetti, G. Damante, D. Russo, S. Bulotta, Fibronectin-1 expression is increased in aggressive thyroid cancer and favors the migration and invasion of cancer cells. Mol. Cell Endocrinol. 431, 123–132 (2016). https://doi.org/10.1016/j.mce.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  29. R. Ma, N. Minsky, S.A. Morshed, T.F. Davies, Stemness in human thyroid cancers and derived cell lines: the role of asymmetrically dividing cancer stem cells resistant to chemotherapy. J. Clin. Endocrinol. Metab. 99(3), E400–E409 (2014). https://doi.org/10.1210/jc.2013-3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. A.R. Garcia-Rendueles, J.S. Rodrigues, M.E. Garcia-Rendueles, M. Suarez-Farina, S. Perez-Romero, F. Barreiro, I. Bernabeu, J. Rodriguez-Garcia, L. Fugazzola, T. Sakai, F. Liu, J. Cameselle-Teijeiro, S.B. Bravo, C.V. Alvarez, Rewiring of the apoptotic TGF-beta-SMAD/NFkappaB pathway through an oncogenic function of p27 in human papillary thyroid cancer. Oncogene 36(5), 652–666 (2017). https://doi.org/10.1038/onc.2016.233

    Article  CAS  PubMed  Google Scholar 

  31. J. Zavadil, E.P. Bottinger, TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24(37), 5764–5774 (2005). https://doi.org/10.1038/sj.onc.1208927

    Article  CAS  PubMed  Google Scholar 

  32. K. Ivanova, I. Manolova, M.M. Ignatova, M. Gulubova, Immunohistochemical expression of TGF-Beta1, SMAD4, SMAD7, TGFbetaRII and CD68-positive TAM densities in papillary thyroid cancer. Open Access Maced. J. Med. Sci. 6(3), 435–441 (2018). https://doi.org/10.3889/oamjms.2018.105

    Article  PubMed  PubMed Central  Google Scholar 

  33. J.M. Cerutti, K.N. Ebina, S.E. Matsuo, L. Martins, R.M. Maciel, E.T. Kimura, Expression of Smad4 and Smad7 in human thyroid follicular carcinoma cell lines. J. Endocrinol. Investig. 26(6), 516–521 (2003). https://doi.org/10.1007/bf03345213

    Article  CAS  Google Scholar 

  34. S. D’Inzeo, A. Nicolussi, C.F. Donini, M. Zani, P. Mancini, F. Nardi, A. Coppa, A novel human Smad4 mutation is involved in papillary thyroid carcinoma progression. Endocr. Relat. Cancer 19(1), 39–55 (2012). https://doi.org/10.1530/erc-11-0233

    Article  PubMed  Google Scholar 

  35. J.A. Knauf, M.A. Sartor, M. Medvedovic, E. Lundsmith, M. Ryder, M. Salzano, Y.E. Nikiforov, T.J. Giordano, R.A. Ghossein, J.A. Fagin, Progression of BRAF-induced thyroid cancer is associated with epithelial–mesenchymal transition requiring concomitant MAP kinase and TGFbeta signaling. Oncogene 30(28), 3153–3162 (2011). https://doi.org/10.1038/onc.2011.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. G. Riesco-Eizaguirre, I. Rodriguez, A. De la Vieja, E. Costamagna, N. Carrasco, M. Nistal, P. Santisteban, The BRAFV600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer. Cancer Res. 69(21), 8317–8325 (2009). https://doi.org/10.1158/0008-5472.can-09-1248

    Article  CAS  PubMed  Google Scholar 

  37. V. Anelli, J.A. Villefranc, S. Chhangawala, R. Martinez-McFaline, E. Riva, A. Nguyen, A. Verma, R. Bareja, Z. Chen, T. Scognamiglio, O. Elemento, Y. Houvras, Oncogenic BRAF disrupts thyroid morphogenesis and function via twist expression. Elife 6, e20728 (2017). https://doi.org/10.7554/eLife.20728

    Article  PubMed  PubMed Central  Google Scholar 

  38. Q. Zhou, J. Chen, J. Feng, Y. Xu, W. Zheng, J. Wang, SOSTDC1 inhibits follicular thyroid cancer cell proliferation, migration, and EMT via suppressing PI3K/Akt and MAPK/Erk signaling pathways. Mol. Cell. Biochem. 435(1–2), 87–95 (2017). https://doi.org/10.1007/s11010-017-3059-0

    Article  CAS  PubMed  Google Scholar 

  39. M. Zou, E.Y. Baitei, H.A. BinEssa, F.A. Al-Mohanna, R.S. Parhar, R. St-Arnaud, S. Kimura, C. Pritchard, A.S. Alzahrani, A.M. Assiri, B.F. Meyer, Y. Shi, Cyp24a1 attenuation limits progression of Braf(V600E)-induced papillary thyroid cancer cells and sensitizes them to BRAF(V600E) inhibitor PLX4720. Cancer Res. 77(8), 2161–2172 (2017). https://doi.org/10.1158/0008-5472.can-16-2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. I. Palona, H. Namba, N. Mitsutake, D. Starenki, A. Podtcheko, I. Sedliarou, A. Ohtsuru, V. Saenko, Y. Nagayama, K. Umezawa, S. Yamashita, BRAFV600E promotes invasiveness of thyroid cancer cells through nuclear factor kappaB activation. Endocrinology 147(12), 5699–5707 (2006). https://doi.org/10.1210/en.2006-0400

    Article  CAS  PubMed  Google Scholar 

  41. N. Agrawal, R. Akbani, B.A. Aksoy, A. Ally et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3), 676–690 (2014). https://doi.org/10.1016/j.cell.2014.09.050

    Article  CAS  PubMed Central  Google Scholar 

  42. N. Lv, Y. Gao, H. Guan, D. Wu, S. Ding, W. Teng, Z. Shan, Inflammatory mediators, tumor necrosis factor-alpha and interferon-gamma, induce EMT in human PTC cell lines. Oncol. Lett. 10(4), 2591–2597 (2015). https://doi.org/10.3892/ol.2015.3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. K.S. Choudhary, N. Rohatgi, S. Halldorsson, E. Briem, T. Gudjonsson, S. Gudmundsson, O. Rolfsson, EGFR signal-network reconstruction demonstrates metabolic crosstalk in EMT. PLoS Comput. Biol. 12(6), e1004924 (2016). https://doi.org/10.1371/journal.pcbi.1004924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. L.H. Chin, S.P. Hsu, W.B. Zhong, Y.C. Liang, Involvement of cysteine-rich protein 61 in the epidermal growth factor-induced migration of human anaplastic thyroid cancer cells. Mol. Carcinog. 55(5), 622–632 (2016). https://doi.org/10.1002/mc.22308

    Article  CAS  PubMed  Google Scholar 

  45. W. Gao, J. Han, Overexpression of ING5 inhibits HGF-induced proliferation, invasion and EMT in thyroid cancer cells via regulation of the c-Met/PI3K/Akt signaling pathway. Biomed. Pharmacother. 98, 265–270 (2018). https://doi.org/10.1016/j.biopha.2017.12.045

    Article  CAS  PubMed  Google Scholar 

  46. J. Xu, W. Lu, S. Zhang, C. Zhu, T. Ren, T. Zhu, H. Zhao, Y. Liu, J. Su, Overexpression of DDR2 contributes to cell invasion and migration in head and neck squamous cell carcinoma. Cancer Biol. Ther. 15(5), 612–622 (2014). https://doi.org/10.4161/cbt.28181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. K. Zhang, C.A. Corsa, S.M. Ponik, J.L. Prior, D. Piwnica-Worms, K.W. Eliceiri, P.J. Keely, G.D. Longmore, The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat. Cell Biol. 15(6), 677–687 (2013). https://doi.org/10.1038/ncb2743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. B. Xie, W. Lin, J. Ye, X. Wang, B. Zhang, S. Xiong, H. Li, G. Tan, DDR2 facilitates hepatocellular carcinoma invasion and metastasis via activating ERK signaling and stabilizing SNAIL1. J. Exp. Clin. Cancer Res. 34, 101 (2015). https://doi.org/10.1186/s13046-015-0218-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Z. Liang, W.J. Xie, M. Zhao, G.P. Cheng, M.J. Wu, DDR2 facilitates papillary thyroid carcinoma epithelial mesenchymal transition by activating ERK2/Snail1 pathway. Oncol. Lett. 14(6), 8114–8121 (2017). https://doi.org/10.3892/ol.2017.7250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. C.W. Jung, J.S. Kong, H. Seol, S. Park, J.S. Koh, S.S. Lee, M.J. Kim, I.J. Choi, J.K. Myung, Expression of activated Notch1 and Hey1 in papillary thyroid carcinoma. Histopathology 70(2), 301–308 (2017). https://doi.org/10.1111/his.13065

    Article  PubMed  Google Scholar 

  51. E. Ferretti, E. Tosi, A. Po, A. Scipioni, R. Morisi, M.S. Espinola, D. Russo, C. Durante, M. Schlumberger, I. Screpanti, S. Filetti, A. Gulino, Notch signaling is involved in expression of thyrocyte differentiation markers and is down-regulated in thyroid tumors. J. Clin. Endocrinol. Metab. 93(10), 4080–4087 (2008). https://doi.org/10.1210/jc.2008-0528

    Article  CAS  PubMed  Google Scholar 

  52. H.S. Park, C.K. Jung, S.H. Lee, B.J. Chae, D.J. Lim, W.C. Park, B.J. Song, J.S. Kim, S.S. Jung, J.S. Bae, Notch1 receptor as a marker of lymph node metastases in papillary thyroid cancer. Cancer Sci. 103(2), 305–309 (2012). https://doi.org/10.1111/j.1349-7006.2011.02161.x

    Article  CAS  PubMed  Google Scholar 

  53. M. Zhang, Y. Qin, B. Zuo, W. Gong, S. Zhang, Y. Gong, Z. Quan, B. Chu, Overexpression of NOTCH-regulated Ankyrin Repeat Protein is associated with papillary thyroid carcinoma progression. PLoS ONE 12(2), e0167782 (2017). https://doi.org/10.1371/journal.pone.0167782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. J. Zhang, Y. Wang, D. Li, S. Jing, Notch and TGF-beta/Smad3 pathways are involved in the interaction between cancer cells and cancer-associated fibroblasts in papillary thyroid carcinoma. Tumour Biol. 35(1), 379–385 (2014). https://doi.org/10.1007/s13277-013-1053-z

    Article  CAS  PubMed  Google Scholar 

  55. L.L. Chen, G.X. Gao, F.X. Shen, X. Chen, X.H. Gong, W.J. Wu, SDC4 gene silencing favors human papillary thyroid carcinoma cell apoptosis and inhibits epithelial mesenchymal transition via Wnt/beta-catenin pathway. Mol. Cells 41(9), 853–867 (2018). https://doi.org/10.14348/molcells.2018.0103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. P. Wend, J.D. Holland, U. Ziebold, W. Birchmeier, Wnt signaling in stem and cancer stem cells. Semin. Cell Dev. Biol. 21(8), 855–863 (2010). https://doi.org/10.1016/j.semcdb.2010.09.004

    Article  CAS  PubMed  Google Scholar 

  57. H. Hardin, R. Zhang, H. Helein, D. Buehler, Z. Guo, R.V. Lloyd, The evolving concept of cancer stem-like cells in thyroid cancer and other solid tumors. Lab. Investig. 97(10), 1142–1151 (2017). https://doi.org/10.1038/labinvest.2017.41

    Article  CAS  PubMed  Google Scholar 

  58. K. Ishigaki, H. Namba, M. Nakashima, T. Nakayama, N. Mitsutake, T. Hayashi, S. Maeda, M. Ichinose, T. Kanematsu, S. Yamashita, Aberrant localization of beta-catenin correlates with overexpression of its target gene in human papillary thyroid cancer. J. Clin. Endocrinol. Metab. 87(7), 3433–3440 (2002). https://doi.org/10.1210/jcem.87.7.8648

    Article  CAS  PubMed  Google Scholar 

  59. A. Sastre-Perona, G. Riesco-Eizaguirre, M.A. Zaballos, P. Santisteban, beta-catenin signaling is required for RAS-driven thyroid cancer through PI3K activation. Oncotarget 7(31), 49435–49449 (2016). https://doi.org/10.18632/oncotarget.10356

    Article  PubMed  PubMed Central  Google Scholar 

  60. D. Wen, T. Liao, B. Ma, N. Qu, R.L. Shi, Z.W. Lu, Y.L. Wang, W.J. Wei, Q.H. Ji, Downregulation of CSN 6 attenuates papillary thyroid carcinoma progression by reducing Wnt/β‐catenin signaling and sensitizes cancer cells to FH 535 therapy. Cancer Med. 7(2), 285–296 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. H. Guan, W. Liang, Z. Xie, H. Li, J. Liu, L. Liu, L. Xiu, Y. Li, Down-regulation of miR-144 promotes thyroid cancer cell invasion by targeting ZEB1 and ZEB2. Endocrine 48(2), 566–574 (2015). https://doi.org/10.1007/s12020-014-0326-7

    Article  CAS  PubMed  Google Scholar 

  62. Q. Qin, Y. Xu, T. He, C. Qin, J. Xu, Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 22(1), 90–106 (2012). https://doi.org/10.1038/cr.2011.144

    Article  CAS  PubMed  Google Scholar 

  63. S. Ansieau, A.P. Morel, G. Hinkal, J. Bastid, A. Puisieux, TWISTing an embryonic transcription factor into an oncoprotein. Oncogene 29(22), 3173–3184 (2010). https://doi.org/10.1038/onc.2010.92

    Article  CAS  PubMed  Google Scholar 

  64. J.M. Schmidt, E. Panzilius, H.S. Bartsch, M. Irmler, J. Beckers, V. Kari, J.R. Linnemann, D. Dragoi, B. Hirschi, U.J. Kloos, S. Sass, F. Theis, S. Kahlert, S.A. Johnsen, K. Sotlar, C.H. Scheel, Stem-cell-like properties and epithelial plasticity arise as stable traits after transient Twist1 activation. Cell Rep. 10(2), 131–139 (2015). https://doi.org/10.1016/j.celrep.2014.12.032

    Article  CAS  PubMed  Google Scholar 

  65. R. Maestro, A.P. Dei Tos, Y. Hamamori, S. Krasnokutsky, V. Sartorelli, L. Kedes, C. Doglioni, D.H. Beach, G.J. Hannon, Twist is a potential oncogene that inhibits apoptosis. Genes Dev. 13(17), 2207–2217 (1999). https://doi.org/10.1101/gad.13.17.2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. X. Wang, M.T. Ling, X.Y. Guan, S.W. Tsao, H.W. Cheung, D.T. Lee, Y.C. Wong, Identification of a novel function of TWIST, a bHLH protein, in the development of acquired taxol resistance in human cancer cells. Oncogene 23(2), 474–482 (2004). https://doi.org/10.1038/sj.onc.1207128

    Article  CAS  PubMed  Google Scholar 

  67. H. Zheng, Y. Kang, Multilayer control of the EMT master regulators. Oncogene 33(14), 1755–1763 (2014). https://doi.org/10.1038/onc.2013.128

    Article  CAS  PubMed  Google Scholar 

  68. E. Sanchez-Tillo, Y. Liu, O. de Barrios, L. Siles, L. Fanlo, M. Cuatrecasas, D.S. Darling, D.C. Dean, A. Castells, A. Postigo, EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell. Mol. Life Sci. 69(20), 3429–3456 (2012). https://doi.org/10.1007/s00018-012-1122-2

    Article  CAS  PubMed  Google Scholar 

  69. G. Di Maro, F.M. Orlandella, T.C. Bencivenga, P. Salerno, C. Ugolini, F. Basolo, R. Maestro, G. Salvatore, Identification of targets of Twist1 transcription factor in thyroid cancer cells. J. Clin. Endocrinol. Metab. 99(9), E1617–E1626 (2014). https://doi.org/10.1210/jc.2013-3799

    Article  CAS  PubMed  Google Scholar 

  70. D. Buehler, H. Hardin, W. Shan, C. Montemayor-Garcia, P.S. Rush, S. Asioli, H. Chen, R.V. Lloyd, Expression of epithelial–mesenchymal transition regulators SNAI2 and TWIST1 in thyroid carcinomas. Mod. Pathol. 26(1), 54–61 (2013). https://doi.org/10.1038/modpathol.2012.137

    Article  CAS  PubMed  Google Scholar 

  71. P. Salerno, G. Garcia-Rostan, S. Piccinin, T.C. Bencivenga, G. Di Maro, C. Doglioni, F. Basolo, R. Maestro, A. Fusco, M. Santoro, G. Salvatore, TWIST1 plays a pleiotropic role in determining the anaplastic thyroid cancer phenotype. J. Clin. Endocrinol. Metab. 96(5), E772–E781 (2011). https://doi.org/10.1210/jc.2010-1182

    Article  CAS  PubMed  Google Scholar 

  72. R.G. Hardy, C. Vicente-Duenas, I. Gonzalez-Herrero, C. Anderson, T. Flores, S. Hughes, C. Tselepis, J.A. Ross, I. Sanchez-Garcia, Snail family transcription factors are implicated in thyroid carcinogenesis. Am. J. Pathol. 171(3), 1037–1046 (2007). https://doi.org/10.2353/ajpath.2007.061211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. J. Wu, Y. Zhang, R. Cheng, W. Gong, T. Ding, Q. Zhai, Y. Wang, B. Meng, B. Sun, Expression of epithelial–mesenchymal transition regulators TWIST, SLUG and SNAIL in follicular thyroid tumours may relate to widely invasive, poorly differentiated and distant metastasis. Histopathology 74(5), 780–791 (2019). https://doi.org/10.1111/his.13778

    Article  PubMed  Google Scholar 

  74. H. Son, A. Moon, Epithelial–mesenchymal Transition and Cell Invasion. Toxicol. Res 26(4), 245–252 (2010). https://doi.org/10.5487/tr.2010.26.4.245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. A. Cano, M.A. Perez-Moreno, I. Rodrigo, A. Locascio, M.J. Blanco, M.G. del Barrio, F. Portillo, M.A. Nieto, The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2(2), 76–83 (2000). https://doi.org/10.1038/35000025

    Article  CAS  PubMed  Google Scholar 

  76. W. Sun, S. Yang, Q. Ma, S. Zheng, J. Wang, D. Chen, K. Zhang, SLUG promotes invasion and metastasis of anaplastic thyroid cancer cells through repression of E-cadherin. Int. J. Clin. Exp. Pathol. 9(8), 8373–8379 (2016)

    CAS  Google Scholar 

  77. J. Huang, L. Guo, Knockdown of SOX9 inhibits the proliferation, invasion, and EMT in thyroid cancer cells. Oncol. Res. 25(2), 167–176 (2017). https://doi.org/10.3727/096504016x14732772150307

    Article  PubMed  PubMed Central  Google Scholar 

  78. D.F. Niu, T. Kondo, T. Nakazawa, N. Oishi, T. Kawasaki, K. Mochizuki, T. Yamane, R. Katoh, Transcription factor Runx2 is a regulator of epithelial–mesenchymal transition and invasion in thyroid carcinomas. Lab. Investig. 92(8), 1181–1190 (2012). https://doi.org/10.1038/labinvest.2012.84

    Article  CAS  PubMed  Google Scholar 

  79. J. Akech, J.J. Wixted, K. Bedard, M. van der Deen, S. Hussain, T.A. Guise, A.J. van Wijnen, J.L. Stein, L.R. Languino, D.C. Altieri, J. Pratap, E. Keller, G.S. Stein, J.B. Lian, Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene 29(6), 811–821 (2010). https://doi.org/10.1038/onc.2009.389

    Article  CAS  PubMed  Google Scholar 

  80. S.K. Baniwal, O. Khalid, Y. Gabet, R.R. Shah, D.J. Purcell, D. Mav, A.E. Kohn-Gabet, Y. Shi, G.A. Coetzee, B. Frenkel, Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis. Mol. Cancer 9, 258 (2010). https://doi.org/10.1186/1476-4598-9-258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. H.F. Yuen, W.K. Kwok, K.K. Chan, C.W. Chua, Y.P. Chan, Y.Y. Chu, Y.C. Wong, X. Wang, K.W. Chan, TWIST modulates prostate cancer cell-mediated bone cell activity and is upregulated by osteogenic induction. Carcinogenesis 29(8), 1509–1518 (2008). https://doi.org/10.1093/carcin/bgn105

    Article  CAS  PubMed  Google Scholar 

  82. J.H. Yan, C.L. Zhao, L.B. Ding, X. Zhou, FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer. Biochem. Biophys. Res. Commun. 466(1), 111–116 (2015). https://doi.org/10.1016/j.bbrc.2015.08.116

    Article  CAS  PubMed  Google Scholar 

  83. H. Zhao, D. Chen, J. Wang, Y. Yin, Q. Gao, Y. Zhang, Downregulation of the transcription factor, FoxD3, is associated with lymph node metastases in invasive ductal carcinomas of the breast. Int. J. Clin. Exp. Pathol. 7(2), 670–676 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  84. H. Yin, T. Meng, L. Zhou, F. Zhao, X. Li, Y. Li, M. Hu, H. Chen, D. Song, FOXD3 regulates anaplastic thyroid cancer progression. Oncotarget 8(20), 33644–33651 (2017). https://doi.org/10.18632/oncotarget.16853

    Article  PubMed  PubMed Central  Google Scholar 

  85. N. Wang, Y. Li, J. Wei, J. Pu, R. Liu, Q. Yang, H. Guan, B. Shi, P. Hou, M. Ji, TBX1 functions as a tumor suppressor in thyroid cancer through inhibiting the activities of the PI3K/AKT and MAPK/ERK pathways. Thyroid 29(3), 378–394 (2019). https://doi.org/10.1089/thy.2018.0312

    Article  CAS  PubMed  Google Scholar 

  86. G. Berx, F. van Roy, Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb. Perspect. Biol. 1(6), a003129 (2009). https://doi.org/10.1101/cshperspect.a003129

    Article  PubMed  PubMed Central  Google Scholar 

  87. P. Baquero, I. Sánchez-Hernández, E. Jiménez-Mora, J.L. Orgaz, B. Jiménez, A. Chiloeches, V600EBRAF promotes invasiveness of thyroid cancer cells by decreasing E-cadherin expression through a Snail-dependent mechanism. Cancer Lett. 335(1), 232–241 (2013). https://doi.org/10.1016/j.canlet.2013.02.033

    Article  CAS  PubMed  Google Scholar 

  88. S.M. Wiseman, O.L. Griffith, S. Deen, A. Rajput, H. Masoudi, B. Gilks, L. Goldstein, A. Gown, S.J. Jones, Identification of molecular markers altered during transformation of differentiated into anaplastic thyroid carcinoma. Arch. Surg. 142(8), 717–729 (2007). https://doi.org/10.1001/archsurg.142.8.717.

    Article  CAS  PubMed  Google Scholar 

  89. C.W. Jung, K.H. Han, H. Seol, S. Park, J.S. Koh, S.S. Lee, M.J. Kim, I.J. Choi, J.K. Myung, Expression of cancer stem cell markers and epithelial–mesenchymal transition-related factors in anaplastic thyroid carcinoma. Int. J. Clin. Exp. Pathol. 8(1), 560–568 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  90. B.T. Beaty, J. Condeelis, Digging a little deeper: the stages of invadopodium formation and maturation. Eur. J. Cell Biol. 93(10–12), 438–444 (2014). https://doi.org/10.1016/j.ejcb.2014.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. R. Yan, T. Yang, H. Zhai, Z. Zhou, L. Gao, Y. Li, MicroRNA-150-5p affects cell proliferation, apoptosis, and EMT by regulation of the BRAF(V600E) mutation in papillary thyroid cancer cells. J. Cell. Biochem. 119(11), 8763–8772 (2018). https://doi.org/10.1002/jcb.27108

    Article  CAS  PubMed  Google Scholar 

  92. A. Kudo, I. Kii, Periostin function in communication with extracellular matrices. J. Cell Commun. Signal. 12(1), 301–308 (2018). https://doi.org/10.1007/s12079-017-0422-6

    Article  PubMed  Google Scholar 

  93. L. Morra, H. Moch, Periostin expression and epithelial–mesenchymal transition in cancer: a review and an update. Virchows Arch. 459(5), 465–475 (2011). https://doi.org/10.1007/s00428-011-1151-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. C. Puppin, N. Passon, F. Frasca, R. Vigneri, F. Tomay, S. Tomaciello, G. Damante, In thyroid cancer cell lines expression of periostin gene is controlled by p73 and is not related to epigenetic marks of active transcription. Cell. Oncol. 34(2), 131–140 (2011). https://doi.org/10.1007/s13402-011-0009-9

    Article  CAS  Google Scholar 

  95. H. Zhong, X. Li, J. Zhang, X. Wu, Overexpression of periostin is positively associated with gastric cancer metastasis through promoting tumor metastasis and invasion. J. Cell. Biochem. 120(6), 9927–9935 (2019). https://doi.org/10.1002/jcb.28275

    Article  CAS  PubMed  Google Scholar 

  96. B. Yu, K. Wu, X. Wang, J. Zhang, L. Wang, Y. Jiang, X. Zhu, W. Chen, M. Yan, Periostin secreted by cancer-associated fibroblasts promotes cancer stemness in head and neck cancer by activating protein tyrosine kinase 7. Cell Death Dis. 9(11), 1082 (2018). https://doi.org/10.1038/s41419-018-1116-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Y. Liu, F. Li, F. Gao, L. Xing, P. Qin, X. Liang, J. Zhang, X. Qiao, L. Lin, Q. Zhao, L. Du, Role of microenvironmental periostin in pancreatic cancer progression. Oncotarget 8(52), 89552–89565 (2017). https://doi.org/10.18632/oncotarget.11533

    Article  PubMed  Google Scholar 

  98. I. Vardaki, S. Ceder, D. Rutishauser, G. Baltatzis, T. Foukakis, T. Panaretakis, Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget 7(46), 74966–74978 (2016). https://doi.org/10.18632/oncotarget.11663

    Article  PubMed  PubMed Central  Google Scholar 

  99. Z.M. Xiao, X.Y. Wang, A.M. Wang, Periostin induces chemoresistance in colon cancer cells through activation of the PI3K/Akt/survivin pathway. Biotechnol. Appl. Biochem. 62(3), 401–406 (2015). https://doi.org/10.1002/bab.1193

    Article  CAS  PubMed  Google Scholar 

  100. S. Xia, C. Wang, E.L. Postma, Y. Yang, X. Ni, W. Zhan, Fibronectin 1 promotes migration and invasion of papillary thyroid cancer and predicts papillary thyroid cancer lymph node metastasis. Onco Targets Ther. 10, 1743–1755 (2017). https://doi.org/10.2147/ott.s122009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. G.S. Mack, A. Marshall, Lost in migration. Nat. Biotechnol. 28(3), 214–229 (2010). https://doi.org/10.1038/nbt0310-214

    Article  CAS  PubMed  Google Scholar 

  102. Y.F. Ji, H. Huang, F. Jiang, R.Z. Ni, M.B. Xiao, S100 family signaling network and related proteins in pancreatic cancer (Review). Int J. Mol. Med. 33(4), 769–776 (2014). https://doi.org/10.3892/ijmm.2014.1633

    Article  CAS  PubMed  Google Scholar 

  103. A. Azimi, M. Pernemalm, M. Frostvik Stolt, J. Hansson, J. Lehtio, S. Egyhazi Brage, C. Hertzman Johansson, Proteomics analysis of melanoma metastases: association between S100A13 expression and chemotherapy resistance. Br. J. Cancer 110(10), 2489–2495 (2014). https://doi.org/10.1038/bjc.2014.169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. A. Pierce, N. Barron, R. Linehan, E. Ryan, L. O'Driscoll, C. Daly, M. Clynes, Identification of a novel, functional role for S100A13 in invasive lung cancer cell lines. Eur. J. Cancer 44(1), 151–159 (2008). https://doi.org/10.1016/j.ejca.2007.10.017

    Article  CAS  PubMed  Google Scholar 

  105. J. Zhong, C. Liu, Y.J. Chen, Q.H. Zhang, J. Yang, X. Kang, S.R. Chen, G.B. Wen, X.Y. Zu, R.X. Cao, The association between S100A13 and HMGA1 in the modulation of thyroid cancer proliferation and invasion. J. Transl. Med. 14, 80 (2016). https://doi.org/10.1186/s12967-016-0824-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. J. Martinez-Aguilar, R. Clifton-Bligh, M.P. Molloy, A multiplexed, targeted mass spectrometry assay of the S100 protein family uncovers the isoform-specific expression in thyroid tumours. BMC Cancer 15, 199 (2015). https://doi.org/10.1186/s12885-015-1217-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. D. Su, Y. Liu, T. Song, Knockdown of IQGAP1 inhibits proliferation and epithelial–mesenchymal transition by Wnt/beta-catenin pathway in thyroid cancer. Onco Targets Ther. 10, 1549–1559 (2017). https://doi.org/10.2147/ott.s128564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. X.X. Wang, K. Wang, X.Z. Li, L.Q. Zhai, C.X. Qu, Y. Zhao, Z.R. Liu, H.Z. Wang, Q.J. An, L.W. Jing, X.H. Wang, Targeted knockdown of IQGAP1 inhibits the progression of esophageal squamous cell carcinoma in vitro and in vivo. PLoS ONE 9(5), e96501 (2014). https://doi.org/10.1371/journal.pone.0096501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. X.X. Wang, X.Z. Li, L.Q. Zhai, Z.R. Liu, X.J. Chen, Y. Pei, Overexpression of IQGAP1 in human pancreatic cancer. Hepatobiliary Pancreat. Dis. Int. 12(5), 540–545 (2013)

    Article  CAS  PubMed  Google Scholar 

  110. H. Hayashi, K. Nabeshima, M. Aoki, M. Hamasaki, S. Enatsu, Y. Yamauchi, Y. Yamashita, H. Iwasaki, Overexpression of IQGAP1 in advanced colorectal cancer correlates with poor prognosis-critical role in tumor invasion. Int. J. Cancer 126(11), 2563–2574 (2010). https://doi.org/10.1002/ijc.24987

    Article  CAS  PubMed  Google Scholar 

  111. A. Walch, S. Seidl, C. Hermannstadter, S. Rauser, J. Deplazes, R. Langer, C.H. von Weyhern, M. Sarbia, R. Busch, M. Feith, S. Gillen, H. Hofler, B. Luber, Combined analysis of Rac1, IQGAP1, Tiam1 and E-cadherin expression in gastric cancer. Mod. Pathol. 21(5), 544–552 (2008). https://doi.org/10.1038/modpathol.2008.3

    Article  CAS  PubMed  Google Scholar 

  112. M.W. Klymkowsky, P. Savagner, Epithelial–mesenchymal transition: a cancer researcher's conceptual friend and foe. Am. J. Pathol. 174(5), 1588–1593 (2009). https://doi.org/10.2353/ajpath.2009.080545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. D. Bazzoun, S. Lelievre, R. Talhouk, Polarity proteins as regulators of cell junction complexes: implications for breast cancer. Pharmacol. Ther. 138(3), 418–427 (2013). https://doi.org/10.1016/j.pharmthera.2013.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. S. Fan, T.W. Hurd, C.J. Liu, S.W. Straight, T. Weimbs, E.A. Hurd, S.E. Domino, B. Margolis, Polarity proteins control ciliogenesis via kinesin motor interactions. Curr. Biol. 14(16), 1451–1461 (2004). https://doi.org/10.1016/j.cub.2004.08.025

    Article  CAS  PubMed  Google Scholar 

  115. Y.-Y. Shan, S.-L. Li, KIF3a inhibits TGF-β1-induced epithelial–mesenchymal transition in lung cancer cells. Int. J. Clin. Exp. Med. 9(2), 2528–2534 (2016).

    CAS  Google Scholar 

  116. Z. Liu, R.E. Rebowe, Z. Wang, Y. Li, Z. Wang, J.S. DePaolo, J. Guo, C. Qian, W. Liu, KIF3a promotes proliferation and invasion via Wnt signaling in advanced prostate cancer. Mol. Cancer Res. 12(4), 491–503 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. S.-C. Wang, Z. Hu, D.-S. Chai, C.-B. Chen, Z.-Y. Wang, L. Wang, Knockdown of KIF3a inhibits hypoxia-induced epithelial-to-mesenchymal transition via suppression of the Wnt/β-catenin pathway in thyroid cancer. Int. J. Clin. Exp. Pathol. 9(2), 1014–1021 (2016)

    CAS  Google Scholar 

  118. P. Antonietti, B. Linder, S. Hehlgans, I.C. Mildenberger, M.C. Burger, S. Fulda, J.P. Steinbach, F. Gessler, F. Rodel, M. Mittelbronn, D. Kogel, Interference with the HSF1/HSP70/BAG3 pathway primes glioma cells to matrix detachment and BH3 mimetic-induced apoptosis. Mol. Cancer Ther. 16(1), 156–168 (2017). https://doi.org/10.1158/1535-7163.mct-16-0262

    Article  CAS  PubMed  Google Scholar 

  119. C.K. Das, B. Linder, F. Bonn, F. Rothweiler, I. Dikic, M. Michaelis, J. Cinatl, M. Mandal, D. Kogel, BAG3 overexpression and cytoprotective autophagy mediate apoptosis resistance in chemoresistant breast cancer cells. Neoplasia 20(3), 263–279 (2018). https://doi.org/10.1016/j.neo.2018.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. J. Zhong, C. Liu, Q.H. Zhang, L. Chen, Y.Y. Shen, Y.J. Chen, X. Zeng, X.Y. Zu, R.X. Cao, TGF-beta1 induces HMGA1 expression: the role of HMGA1 in thyroid cancer proliferation and invasion. Int. J. Oncol. 50(5), 1567–1578 (2017). https://doi.org/10.3892/ijo.2017.3958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. S.N. Shah, L. Cope, W. Poh, A. Belton, S. Roy, C.C. Talbot Jr., S. Sukumar, D.L. Huso, L.M. Resar, HMGA1: a master regulator of tumor progression in triple-negative breast cancer cells. PLoS ONE 8(5), e63419 (2013). https://doi.org/10.1371/journal.pone.0063419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. N. Abe, T. Watanabe, T. Masaki, T. Mori, M. Sugiyama, H. Uchimura, Y. Fujioka, G. Chiappetta, A. Fusco, Y. Atomi, Pancreatic duct cell carcinomas express high levels of high mobility group I(Y) proteins. Cancer Res. 60(12), 3117–3122 (2000)

    CAS  PubMed  Google Scholar 

  123. B. Meyer, S. Loeschke, A. Schultze, T. Weigel, M. Sandkamp, T. Goldmann, E. Vollmer, J. Bullerdiek, HMGA2 overexpression in non-small cell lung cancer. Mol. Carcinog. 46(7), 503–511 (2007). https://doi.org/10.1002/mc.20235

    Article  CAS  PubMed  Google Scholar 

  124. A. Belton, A. Gabrovsky, Y.K. Bae, R. Reeves, C. Iacobuzio-Donahue, D.L. Huso, L.M. Resar, HMGA1 induces intestinal polyposis in transgenic mice and drives tumor progression and stem cell properties in colon cancer cells. PLoS ONE 7(1), e30034 (2012). https://doi.org/10.1371/journal.pone.0030034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. J. Roche, R.M. Gemmill, H.A. Drabkin, Epigenetic regulation of the epithelial to mesenchymal transition in lung cancer. Cancers 9(7) (2017). https://doi.org/10.3390/cancers9070072

    Article  PubMed Central  Google Scholar 

  126. J.W. Wei, K. Huang, C. Yang, C.S. Kang, Non-coding RNAs as regulators in epigenetics (Review). Oncol. Rep. 37(1), 3–9 (2017). https://doi.org/10.3892/or.2016.5236

    Article  PubMed  Google Scholar 

  127. J.Y. Lee, G. Kong, Roles and epigenetic regulation of epithelial–mesenchymal transition and its transcription factors in cancer initiation and progression. Cell. Mol. Life Sci. 73(24), 4643–4660 (2016). https://doi.org/10.1007/s00018-016-2313-z

    Article  CAS  PubMed  Google Scholar 

  128. T. Sasanakietkul, T.D. Murtha, M. Javid, R. Korah, T. Carling, Epigenetic modifications in poorly differentiated and anaplastic thyroid cancer. Mol. Cell. Endocrinol. 469, 23–37 (2018). https://doi.org/10.1016/j.mce.2017.05.022

    Article  CAS  PubMed  Google Scholar 

  129. D. Vu-Phan, R.J. Koenig, Genetics and epigenetics of sporadic thyroid cancer. Mol. Cell. Endocrinol. 386(1–2), 55–66 (2014). https://doi.org/10.1016/j.mce.2013.07.030

    Article  CAS  PubMed  Google Scholar 

  130. D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004)

    Article  CAS  PubMed  Google Scholar 

  131. T. Wang, H. Xu, M. Qi, S. Yan, X. Tian, miRNA dysregulation and the risk of metastasis and invasion in papillary thyroid cancer: a systematic review and meta-analysis. Oncotarget 9(4), 5473–5479 (2018). https://doi.org/10.18632/oncotarget.16681

    Article  PubMed  Google Scholar 

  132. C.S. Fuziwara, E.T. Kimura, MicroRNA deregulation in anaplastic thyroid cancer biology. Int. J. Endocrinol. 2014, 743450 (2014). https://doi.org/10.1155/2014/743450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. P. Xu, Y. Zhu, B. Sun, Z. Xiao, Colorectal cancer characterization and therapeutic target prediction based on microRNA expression profile. Sci. Rep. 6, 20616 (2016). https://doi.org/10.1038/srep20616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. W. Sun, X. Lan, Z. Wang, W. Dong, L. He, T. Zhang, P. Zhang, H. Zhang, MicroRNA-144 inhibits proliferation by targeting WW domain-containing transcription regulator protein 1 in papillary thyroid cancer. Oncol. Lett. 15(1), 1007–1013 (2018). https://doi.org/10.3892/ol.2017.7440

    Article  CAS  PubMed  Google Scholar 

  135. F. Marini, E. Luzi, M.L. Brandi, MicroRNA role in thyroid cancer development. J. Thyroid Res. 2011, 407123 (2011). https://doi.org/10.4061/2011/407123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. C.L. Bi, Y.Q. Zhang, B. Li, M. Guo, Y.L. Fu, MicroRNA-520a-3p suppresses epithelial–mesenchymal transition, invasion, and migration of papillary thyroid carcinoma cells via the JAK1-mediated JAK/STAT signaling pathway. J. Cell. Physiol. 234(4), 4054–4067 (2019). https://doi.org/10.1002/jcp.27199

    Article  CAS  PubMed  Google Scholar 

  137. R. Xiao, C. Li, B. Chai, miRNA-144 suppresses proliferation and migration of colorectal cancer cells through GSPT1. Biomed. Pharmacother. 74, 138–144 (2015). https://doi.org/10.1016/j.biopha.2015.08.006

    Article  CAS  PubMed  Google Scholar 

  138. S. Chen, P. Li, J. Li, Y. Wang, Y. Du, X. Chen, W. Zang, H. Wang, H. Chu, G. Zhao, G. Zhang, MiR-144 inhibits proliferation and induces apoptosis and autophagy in lung cancer cells by targeting TIGAR. Cell. Physiol. Biochem. 35(3), 997–1007 (2015). https://doi.org/10.1159/000369755

    Article  CAS  PubMed  Google Scholar 

  139. Y. Guo, L. Ying, Y. Tian, P. Yang, Y. Zhu, Z. Wang, F. Qiu, J. Lin, miR-144 downregulation increases bladder cancer cell proliferation by targeting EZH2 and regulating Wnt signaling. FEBS J. 280(18), 4531–4538 (2013). https://doi.org/10.1111/febs.12417

    Article  CAS  PubMed  Google Scholar 

  140. J. Sun, R. Shi, S. Zhao, X. Li, S. Lu, H. Bu, X. Ma, C. Su, E2F8, a direct target of miR-144, promotes papillary thyroid cancer progression via regulating cell cycle. J. Exp. Clin. Cancer Res. 36(1), 40 (2017). https://doi.org/10.1186/s13046-017-0504-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. F. Pacifico, E. Crescenzi, S. Mellone, A. Iannetti, N. Porrino, D. Liguoro, F. Moscato, M. Grieco, S. Formisano, A. Leonardi, Nuclear factor-{kappa}B contributes to anaplastic thyroid carcinomas through up-regulation of miR-146a. J. Clin. Endocrinol. Metab. 95(3), 1421–1430 (2010). https://doi.org/10.1210/jc.2009-1128

    Article  CAS  PubMed  Google Scholar 

  142. X. Deng, B. Wu, K. Xiao, J. Kang, J. Xie, X. Zhang, Y. Fan, MiR-146b-5p promotes metastasis and induces epithelial–mesenchymal transition in thyroid cancer by targeting ZNRF3. Cell. Physiol. Biochem. 35(1), 71–82 (2015). https://doi.org/10.1159/000369676

    Article  CAS  PubMed  Google Scholar 

  143. J. Ramírez-Moya, L. Wert-Lamas, P. Santisteban, MicroRNA-146b promotes PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting PTEN. Oncogene 37(25), 3369–3383 (2018). https://doi.org/10.1038/s41388-017-0088-9

    Article  CAS  PubMed  Google Scholar 

  144. F. An, M. Xia, Q. Zhan, X. Wu, F. Wu, Sa1797 body fluid miRNA profile of cholangiocarcinoma identifies miR-150-5p as a tumor suppressor gene involved in tumor invasion and metastasis. Gastroenterology 150(4), S368–S369 (2016)

    Article  Google Scholar 

  145. J.C. Santos, M.T. Brianti, V.R. Almeida, M.M. Ortega, W. Fischer, R. Haas, A. Matheu, M.L. Ribeiro, Helicobacter pylori infection modulates the expression of miRNAs associated with DNA mismatch repair pathway. Mol. Carcinog. 56(4), 1372–1379 (2017). https://doi.org/10.1002/mc.22590

    Article  CAS  PubMed  Google Scholar 

  146. L. Xue, D. Su, D. Li, W. Gao, R. Yuan, W. Pang, MiR-200 regulates epithelial–mesenchymal transition in anaplastic thyroid cancer via EGF/EGFR signaling. Cell Biochem. Biophys. 72(1), 185–190 (2015). https://doi.org/10.1007/s12013-014-0435-1

    Article  CAS  PubMed  Google Scholar 

  147. C.J. Chang, C.H. Chao, W. Xia, J.Y. Yang, Y. Xiong, C.W. Li, W.H. Yu, S.K. Rehman, J.L. Hsu, H.H. Lee, M. Liu, C.T. Chen, D. Yu, M.C. Hung, p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nat. Cell Biol. 13(3), 317–323 (2011). https://doi.org/10.1038/ncb2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Y.Y. Park, S.B. Kim, H.D. Han, B.H. Sohn, J.H. Kim, J. Liang, Y. Lu, C. Rodriguez-Aguayo, G. Lopez-Berestein, G.B. Mills, A.K. Sood, J.S. Lee, Tat-activating regulatory DNA-binding protein regulates glycolysis in hepatocellular carcinoma by regulating the platelet isoform of phosphofructokinase through microRNA 520. Hepatology 58(1), 182–191 (2013). https://doi.org/10.1002/hep.26310

    Article  CAS  PubMed  Google Scholar 

  149. I. Keklikoglou, C. Koerner, C. Schmidt, J.D. Zhang, D. Heckmann, A. Shavinskaya, H. Allgayer, B. Guckel, T. Fehm, A. Schneeweiss, O. Sahin, S. Wiemann, U. Tschulena, MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-kappaB and TGF-beta signaling pathways. Oncogene 31(37), 4150–4163 (2012). https://doi.org/10.1038/onc.2011.571

    Article  CAS  PubMed  Google Scholar 

  150. X.J. He, Y.Y. Ma, S. Yu, X.T. Jiang, Y.D. Lu, L. Tao, H.P. Wang, Z.M. Hu, H.Q. Tao, Up-regulated miR-199a-5p in gastric cancer functions as an oncogene and targets klotho. BMC Cancer 14, 218 (2014). https://doi.org/10.1186/1471-2407-14-218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. J. Chen, V.Y. Shin, M.T. Siu, J.C. Ho, I. Cheuk, A. Kwong, miR-199a-5p confers tumor-suppressive role in triple-negative breast cancer. BMC Cancer 16(1), 887 (2016). https://doi.org/10.1186/s12885-016-2916-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Y. Hu, J. Liu, B. Jiang, J. Chen, Z. Fu, F. Bai, J. Jiang, Z. Tang, MiR-199a-5p loss up-regulated DDR1 aggravated colorectal cancer by activating epithelial-to-mesenchymal transition related signaling. Dig. Dis. Sci. 59(9), 2163–2172 (2014). https://doi.org/10.1007/s10620-014-3136-0

    Article  CAS  PubMed  Google Scholar 

  153. S. Ma, W. Jia, S. Ni, miR-199a-5p inhibits the progression of papillary thyroid carcinoma by targeting SNAI1. Biochem. Biophys. Res. Commun. 497(1), 181–186 (2018). https://doi.org/10.1016/j.bbrc.2018.02.051

    Article  CAS  PubMed  Google Scholar 

  154. G. Su, Q. He, J. Wang, Clinical values of long non-coding RNAs in bladder cancer: a systematic review. Front. Physiol. 9, 652 (2018). https://doi.org/10.3389/fphys.2018.00652

    Article  PubMed  PubMed Central  Google Scholar 

  155. R. Li, L. Zhang, L. Jia, Y. Duan, Y. Li, L. Bao, N. Sha, Long non-coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation. PLoS ONE 9(6), e100893 (2014). https://doi.org/10.1371/journal.pone.0100893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. W. Jiang, D. Zhang, B. Xu, Z. Wu, S. Liu, L. Zhang, Y. Tian, X. Han, D. Tian, Long non-coding RNA BANCR promotes proliferation and migration of lung carcinoma via MAPK pathways. Biomed. Pharmacother. 69, 90–95 (2015). https://doi.org/10.1016/j.biopha.2014.11.027

    Article  CAS  PubMed  Google Scholar 

  157. Y. Wang, J. Gu, X. Lin, W. Yan, W. Yang, G. Wu, lncRNA BANCR promotes EMT in PTC via the Raf/MEK/ERK signaling pathway. Oncol. Lett. 15(4), 5865–5870 (2018). https://doi.org/10.3892/ol.2018.8017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. W. Lu, H. Zhang, Y. Niu, Y. Wu, W. Sun, H. Li, J. Kong, K. Ding, H.M. Shen, H. Wu, D. Xia, Y. Wu, Long non-coding RNA linc00673 regulated non-small cell lung cancer proliferation, migration, invasion and epithelial mesenchymal transition by sponging miR-150-5p. Mol. Cancer 16(1), 118 (2017). https://doi.org/10.1186/s12943-017-0685-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. J. Yu, Y. Liu, Z. Gong, S. Zhang, C. Guo, X. Li, Y. Tang, L. Yang, Y. He, F. Wei, Y. Wang, Q. Liao, W. Zhang, X. Li, Y. Li, G. Li, W. Xiong, Z. Zeng, Overexpression long non-coding RNA LINC00673 is associated with poor prognosis and promotes invasion and metastasis in tongue squamous cell carcinoma. Oncotarget 8(10), 16621–16632 (2017). https://doi.org/10.18632/oncotarget.14200

    Article  PubMed  Google Scholar 

  160. E. Xia, A. Bhandari, Y. Shen, X. Zhou, O. Wang, lncRNA LINC00673 induces proliferation, metastasis and epithelial–mesenchymal transition in thyroid carcinoma via Kruppel-like factor 2. Int. J. Oncol. 53(5), 1927–1938 (2018). https://doi.org/10.3892/ijo.2018.4524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Y. Dong, W. Wu, Downregulation of lncRNA CASC2 promotes the postoperative local recurrence of early oral squamous cell carcinoma. Eur. Arch. Otorhinolaryngol. 276(2), 605–610 (2019). https://doi.org/10.1007/s00405-018-5209-8

    Article  PubMed  Google Scholar 

  162. Z. Pei, X. Du, Y. Song, L. Fan, F. Li, Y. Gao, R. Wu, Y. Chen, W. Li, H. Zhou, Y. Yang, J. Zeng, Down-regulation of lncRNA CASC2 promotes cell proliferation and metastasis of bladder cancer by activation of the Wnt/beta-catenin signaling pathway. Oncotarget 8(11), 18145–18153 (2017). https://doi.org/10.18632/oncotarget.15210

    Article  PubMed  PubMed Central  Google Scholar 

  163. Y. Cao, R. Xu, X. Xu, Y. Zhou, L. Cui, X. He, Downregulation of lncRNA CASC2 by microRNA-21 increases the proliferation and migration of renal cell carcinoma cells. Mol. Med. Rep. 14(1), 1019–1025 (2016). https://doi.org/10.3892/mmr.2016.5337

    Article  CAS  PubMed  Google Scholar 

  164. T. Zhou, M. Zhong, S. Zhang, Z. Wang, R. Xie, C. Xiong, Y. Lv, W. Chen, J. Yu, LncRNA CASC2 expression is down- regulated in papillary thyroid cancer and promotes cell invasion by affecting EMT pathway. Cancer Biomark. 23(2), 185–191 (2018). https://doi.org/10.3233/cbm-181198

    Article  CAS  PubMed  Google Scholar 

  165. H. Lei, Y. Gao, X. Xu, LncRNA TUG1 influences papillary thyroid cancer cell proliferation, migration and EMT formation through targeting miR-145. Acta Biochim. Biophys. Sin. 49(7), 588–597 (2017). https://doi.org/10.1093/abbs/gmx047

    Article  CAS  PubMed  Google Scholar 

  166. Y. Pan, C. Li, J. Chen, K. Zhang, X. Chu, R. Wang, L. Chen, The emerging roles of long noncoding RNA ROR (lincRNA-ROR) and its possible mechanisms in human cancers. Cell Physiol. Biochem. 40(1–2), 219–229 (2016). https://doi.org/10.1159/000452539

    Article  CAS  PubMed  Google Scholar 

  167. A.P. Hutchins, D. Pei, Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs. Sci. Bull. 60(20), 1722–1733 (2015). https://doi.org/10.1007/s11434-015-0905-x

    Article  CAS  Google Scholar 

  168. K. Takahashi, I.K. Yan, H. Haga, T. Patel, Modulation of hypoxia-signaling pathways by extracellular linc-RoR. J. Cell Sci. 127(Pt 7), 1585–1594 (2014). https://doi.org/10.1242/jcs.141069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Y.M. Chen, Y. Liu, H.Y. Wei, K.Z. Lv, P. Fu, Linc-ROR induces epithelial–mesenchymal transition and contributes to drug resistance and invasion of breast cancer cells. Tumour Biol. 37(8), 10861–10870 (2016). https://doi.org/10.1007/s13277-016-4909-1

    Article  CAS  PubMed  Google Scholar 

  170. X.Y. Xu, J. Zhang, Y.H. Qi, M. Kong, S.A. Liu, J.J. Hu, Linc-ROR promotes endometrial cell proliferation by activating the PI3K-Akt pathway. Eur. Rev. Med. Pharmacol. Sci. 22(8), 2218–2225 (2018). https://doi.org/10.26355/eurrev_201804_14807

    Article  PubMed  Google Scholar 

  171. R. Zhang, H. Hardin, W. Huang, D. Buehler, R.V. Lloyd, R.N.A. Long Non-coding, Linc-ROR Is upregulated in papillary thyroid carcinoma. Endocr. Pathol. 29(1), 1–8 (2018). https://doi.org/10.1007/s12022-017-9507-2

    Article  CAS  PubMed  Google Scholar 

  172. D.F. Quail, J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19(11), 1423–1437 (2013). https://doi.org/10.1038/nm.3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. M. Ryder, R.A. Ghossein, J.C. Ricarte-Filho, J.A. Knauf, J.A. Fagin, Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr. Relat. Cancer 15(4), 1069–1074 (2008). https://doi.org/10.1677/erc-08-0036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. J.D. French, G.R. Kotnis, S. Said, C.D. Raeburn, R.C. McIntyre Jr., J.P. Klopper, B.R. Haugen, Programmed death-1+ T cells and regulatory T cells are enriched in tumor-involved lymph nodes and associated with aggressive features in papillary thyroid cancer. J. Clin. Endocrinol. Metab. 97(6), E934–E943 (2012). https://doi.org/10.1210/jc.2011-3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. R.M. Melillo, V. Guarino, E. Avilla, M.R. Galdiero, F. Liotti, N. Prevete, F.W. Rossi, F. Basolo, C. Ugolini, A. de Paulis, M. Santoro, G. Marone, Mast cells have a protumorigenic role in human thyroid cancer. Oncogene 29(47), 6203–6215 (2010). https://doi.org/10.1038/onc.2010.348

    Article  CAS  PubMed  Google Scholar 

  176. H. Li, X. Fan, J. Houghton, Tumor microenvironment: the role of the tumor stroma in cancer. J. Cell. Biochem. 101(4), 805–815 (2007). https://doi.org/10.1002/jcb.21159

    Article  CAS  PubMed  Google Scholar 

  177. R.O. Hynes, The extracellular matrix: not just pretty fibrils. Science 326(5957), 1216–1219 (2009). https://doi.org/10.1126/science.1176009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. O.W. Petersen, H.L. Nielsen, T. Gudjonsson, R. Villadsen, F. Rank, E. Niebuhr, M.J. Bissell, L. Ronnov-Jessen, Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am. J. Pathol. 162(2), 391–402 (2003). https://doi.org/10.1016/s0002-9440(10)63834-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. R.Z. Panni, D.C. Linehan, D.G. DeNardo, Targeting tumor-infiltrating macrophages to combat cancer. Immunotherapy 5(10), 1075–1087 (2013). https://doi.org/10.2217/imt.13.102

    Article  CAS  PubMed  Google Scholar 

  180. J.B. Mitchem, D.J. Brennan, B.L. Knolhoff, B.A. Belt, Y. Zhu, D.E. Sanford, L. Belaygorod, D. Carpenter, L. Collins, D. Piwnica-Worms, S. Hewitt, G.M. Udupi, W.M. Gallagher, C. Wegner, B.L. West, A. Wang-Gillam, P. Goedegebuure, D.C. Linehan, D.G. DeNardo, Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73(3), 1128–1141 (2013). https://doi.org/10.1158/0008-5472.can-12-2731

    Article  CAS  PubMed  Google Scholar 

  181. W. Qing, W.Y. Fang, L. Ye, L.Y. Shen, X.F. Zhang, X.C. Fei, X. Chen, W.Q. Wang, X.Y. Li, J.C. Xiao, G. Ning, Density of tumor-associated macrophages correlates with lymph node metastasis in papillary thyroid carcinoma. Thyroid 22(9), 905–910 (2012). https://doi.org/10.1089/thy.2011.0452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. W.C. Chang, J.Y. Chen, C.H. Lee, A.H. Yang, Expression of decoy receptor 3 in diffuse sclerosing variant of papillary thyroid carcinoma: correlation with M2 macrophage differentiation and lymphatic invasion. Thyroid 23(6), 720–726 (2013). https://doi.org/10.1089/thy.2012.0261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. W. Fang, L. Ye, L. Shen, J. Cai, F. Huang, Q. Wei, X. Fei, X. Chen, H. Guan, W. Wang, X. Li, G. Ning, Tumor-associated macrophages promote the metastatic potential of thyroid papillary cancer by releasing CXCL8. Carcinogenesis 35(8), 1780–1787 (2014). https://doi.org/10.1093/carcin/bgu060

    Article  CAS  PubMed  Google Scholar 

  184. C.D. Yeo, N. Kang, S.Y. Choi, B.N. Kim, C.K. Park, J.W. Kim, Y.K. Kim, S.J. Kim, The role of hypoxia on the acquisition of epithelial–mesenchymal transition and cancer stemness: a possible link to epigenetic regulation. Korean J. Intern. Med. 32(4), 589–599 (2017). https://doi.org/10.3904/kjim.2016.302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. O. Koperek, E. Akin, R. Asari, B. Niederle, N. Neuhold, Expression of hypoxia-inducible factor 1 alpha in papillary thyroid carcinoma is associated with desmoplastic stromal reaction and lymph node metastasis. Virchows Arch. 463(6), 795–802 (2013). https://doi.org/10.1007/s00428-013-1484-3

    Article  CAS  PubMed  Google Scholar 

  186. Y. Lin, Q. Ma, L. Li, H. Wang, The CXCL12-CXCR4 axis promotes migration, invasiveness, and EMT in human papillary thyroid carcinoma B-CPAP cells via NF-kappaB signaling. Biochem. Cell Biol. 96(5), 619–626 (2018). https://doi.org/10.1139/bcb-2017-0074

    Article  CAS  PubMed  Google Scholar 

  187. D. Cui, Y. Zhao, J. Xu, Activated CXCL5-CXCR2 axis promotes the migration, invasion and EMT of papillary thyroid carcinoma cells via modulation of beta-catenin pathway. Biochimie 148, 1–11 (2018). https://doi.org/10.1016/j.biochi.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  188. C. Thery, L. Zitvogel, S. Amigorena, Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2(8), 569–579 (2002). https://doi.org/10.1038/nri855

    Article  CAS  PubMed  Google Scholar 

  189. H. Hardin, H. Helein, K. Meyer, S. Robertson, R. Zhang, W. Zhong, R.V. Lloyd, Thyroid cancer stem-like cell exosomes: regulation of EMT via transfer of lncRNAs. Lab. Investig 98(9), 1133–1142 (2018). https://doi.org/10.1038/s41374-018-0065-0

    Article  CAS  PubMed  Google Scholar 

  190. I. Fabregat, A. Malfettone, J. Soukupova, New insights into the crossroads between EMT and stemness in the context of cancer. J. Clin. Med. 5(3) (2016). https://doi.org/10.3390/jcm5030037

    Article  PubMed Central  Google Scholar 

  191. S. Mukherjee, J. Kong, D.J. Brat, Cancer stem cell division: when the rules of asymmetry are broken. Stem Cells Dev. 24(4), 405–416 (2015). https://doi.org/10.1089/scd.2014.0442

    Article  PubMed  Google Scholar 

  192. E. Mato, C. Gonzalez, A. Moral, J.I. Perez, O. Bell, E. Lerma, A. de Leiva, ABCG2/BCRP gene expression is related to epithelial–mesenchymal transition inducer genes in a papillary thyroid carcinoma cell line (TPC-1). J. Mol. Endocrinol. 52(3), 289–300 (2014). https://doi.org/10.1530/jme-14-0051

    Article  CAS  PubMed  Google Scholar 

  193. N.K. Kurrey, S.P. Jalgaonkar, A.V. Joglekar, A.D. Ghanate, P.D. Chaskar, R.Y. Doiphode, S.A. Bapat, Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27(9), 2059–2068 (2009). https://doi.org/10.1002/stem.154

    Article  CAS  PubMed  Google Scholar 

  194. X. Ye, W.L. Tam, T. Shibue, Y. Kaygusuz, F. Reinhardt, E. Ng Eaton, R.A. Weinberg, Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525(7568), 256–260 (2015). https://doi.org/10.1038/nature14897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. E. Sanchez-Tillo, O. de Barrios, L. Siles, M. Cuatrecasas, A. Castells, A. Postigo, beta-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc. Natl Acad. Sci. USA 108(48), 19204–19209 (2011). https://doi.org/10.1073/pnas.1108977108

    Article  PubMed  PubMed Central  Google Scholar 

  196. S.A. Mani, W. Guo, M.J. Liao, E.N. Eaton, A. Ayyanan, A.Y. Zhou, M. Brooks, F. Reinhard, C.C. Zhang, M. Shipitsin, L.L. Campbell, K. Polyak, C. Brisken, J. Yang, R.A. Weinberg, The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133(4), 704–715 (2008). https://doi.org/10.1016/j.cell.2008.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. H. Hardin, X.M. Yu, A.D. Harrison, C. Larrain, R. Zhang, J. Chen, H. Chen, R.V. Lloyd, Generation of novel thyroid cancer stem-like cell clones: effects of resveratrol and valproic acid. Am. J. Pathol. 186(6), 1662–1673 (2016). https://doi.org/10.1016/j.ajpath.2016.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. H. Hardin, Z. Guo, W. Shan, C. Montemayor-Garcia, S. Asioli, X.M. Yu, A.D. Harrison, H. Chen, R.V. Lloyd, The roles of the epithelial–mesenchymal transition marker PRRX1 and miR-146b-5p in papillary thyroid carcinoma progression. Am. J. Pathol. 184(8), 2342–2354 (2014). https://doi.org/10.1016/j.ajpath.2014.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. W. Li, A.N. Reeb, W.A. Sewell, G. Elhomsy, R.Y. Lin, Phenotypic characterization of metastatic anaplastic thyroid cancer stem cells. PLoS ONE 8(5), e65095 (2013). https://doi.org/10.1371/journal.pone.0065095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. J. Liu, R.E. Brown, Immunohistochemical detection of epithelialmesenchymal transition associated with stemness phenotype in anaplastic thyroid carcinoma. Int. J. Clin. Exp. Pathol. 3(8), 755–762 (2010)

    PubMed  PubMed Central  Google Scholar 

  201. K. Yasui, M. Shimamura, N. Mitsutake, Y. Nagayama, SNAIL induces epithelial-to-mesenchymal transition and cancer stem cell-like properties in aldehyde dehydroghenase-negative thyroid cancer cells. Thyroid 23(8), 989–996 (2013). https://doi.org/10.1089/thy.2012.0319

    Article  CAS  PubMed  Google Scholar 

  202. L. Lan, Y. Luo, D. Cui, B.Y. Shi, W. Deng, L.L. Huo, H.L. Chen, G.Y. Zhang, L.L. Deng, Epithelial–mesenchymal transition triggers cancer stem cell generation in human thyroid cancer cells. Int. J. Oncol. 43(1), 113–120 (2013). https://doi.org/10.3892/ijo.2013.1913

    Article  CAS  PubMed  Google Scholar 

  203. A. Antonelli, C. La Motta, Novel therapeutic clues in thyroid carcinomas: the role of targeting cancer stem cells. Med. Res. Rev. 37(6), 1299–1317 (2017). https://doi.org/10.1002/med.21448

    Article  PubMed  Google Scholar 

  204. A. Klaus, O. Fathi, T.W. Tatjana, N. Bruno, K. Oskar, Expression of hypoxia-associated protein HIF-1alpha in follicular thyroid cancer is associated with distant metastasis. Pathol. Oncol. Res. 24(2), 289–296 (2018). https://doi.org/10.1007/s12253-017-0232-4

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Hedayati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakib, H., Rajabi, S., Dehghan, M.H. et al. Epithelial-to-mesenchymal transition in thyroid cancer: a comprehensive review. Endocrine 66, 435–455 (2019). https://doi.org/10.1007/s12020-019-02030-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-02030-8

Keywords

Navigation