Skip to main content

Advertisement

Log in

Metformin inhibits thyroid cancer cell growth, migration, and EMT through the mTOR pathway

  • Research Article
  • Published:
Tumor Biology

Abstract

Mammalian target of rapamycin (mTOR) signaling pathways have been shown to be activated in thyroid cancer. Recent evidences have demonstrated that the antidiabetic agent metformin, an activator of 5′-AMP-activated protein kinase, can impair the proliferation and migration of cancer cells via inhibition of mTOR. However, the underlying mechanisms remain unclear. In this study, we show that metformin can inhibit mTOR pathway to impair growth and migration of the thyroid cancer cell lines. Cyclin D1 and c-Myc are important regulators of cancer cell growth, and we observed that treatment of thyroid cancer cells with metformin reduced c-Myc and cyclin D1 expression through suppression of mTOR and subsequent inhibition of P70S6K1 and 4E-BP1 phosphorylation. Metformin reduced epithelial to mesenchymal transition (EMT) in thyroid carcinoma cells. Moreover, metformin regulated expression of the EMT-related markers E-cadherin, N-cadherin, and Snail. Additionally, knockdown of TSC2, the upstream regulatory molecule of mTOR pathway, or treatment of rapamycin, the mTOR inhibitor, could abolish the effects of metformin to regulate thyroid cancer cell proliferation, migration, EMT, and mTOR pathway molecules. These results indicate that metformin can suppress the proliferation, migration, and EMT of thyroid cancer cell lines by inhibiting mTOR signaling. These findings suggest that metformin and its molecular targets may be useful in thyroid carcinoma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen AY, Jemal A, Ward EM. Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer. 2009;115:3801–7.

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Kilfoy BA, Zheng T, Holford TR, Han X, Ward MH, Sjodin A, et al. International patterns and trends in thyroid cancer incidence, 1973–2002. Cancer Causes Control. 2009;20:525–31.

    Article  PubMed  Google Scholar 

  4. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13:184–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu D, Xing J, Trink B, Xing M. BRAF mutation-selective inhibition of thyroid cancer cells by the novel MEK inhibitor RDEA119 and genetic-potentiated synergism with the mTOR inhibitor temsirolimus. Int J Cancer. 2010;127:2965–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ciampi R, Knauf JA, Kerler R, Gandhi M, Zhu Z, Nikiforova MN, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 2005;115:94–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer. 2006;6:292–306.

    Article  CAS  PubMed  Google Scholar 

  8. Liu Z, Hou P, Ji M, Guan H, Studeman K, Jensen K, et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab. 2008;93:3106–16.

    Article  CAS  PubMed  Google Scholar 

  9. Crandall JP, Knowler WC, Kahn SE, Marrero D, Florez JC, Bray GA, et al. Diabetes prevention program research, the prevention of type 2 diabetes. Nat Clin Pract Endocrinol Metab. 2008;4:382–93.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Witters LA. The blooming of the French lilac. J Clin Invest. 2001;108:1105–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kato K, Gong J, Iwama H, Kitanaka A, Tani J, Miyoshi H, et al. The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo. Mol Cancer Ther. 2012;11:549–60.

    Article  CAS  PubMed  Google Scholar 

  13. Lea MA, Pourat J, Patel R, des Bordes C. Growth inhibition of colon cancer cells by compounds affecting AMPK activity. World J Gastrointest Oncol. 2014;6:244–52.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rattan R, Giri S, Hartmann LC, Shridhar V. Metformin attenuates ovarian cancer cell growth in an AMP-kinase dispensable manner. J Cell Mol Med. 2011;15:166–78.

    Article  CAS  PubMed  Google Scholar 

  15. Chen G, Xu S, Renko K, Derwahl M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J Clin Endocrinol Metab. 2012;97:E510–20.

    Article  CAS  PubMed  Google Scholar 

  16. Cho SW, Yi KH, Han SK, Sun HJ, Kim YA, Oh BC, et al. Therapeutic potential of metformin in papillary thyroid cancer in vitro and in vivo. Mol Cell Endocrinol. 2014;393:24–9.

    Article  CAS  PubMed  Google Scholar 

  17. Klubo-Gwiezdzinska J, Jensen K, Costello J, Patel A, Hoperia V, Bauer A, et al. Metformin inhibits growth and decreases resistance to anoikis in medullary thyroid cancer cells. Endocr Relat Cancer. 2012;19:447–56.

    Article  CAS  PubMed  Google Scholar 

  18. Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 2007;67:10804–12.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao Z, Cheng X, Wang Y, Han R, Li L, Xiang T, et al. Metformin inhibits the IL-6-induced epithelial-mesenchymal transition and lung adenocarcinoma growth and metastasis. PLoS One. 2014;9:e95884.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vazquez-Martin A, Oliveras-Ferraros C, Cufi S, Del Barco S, Martin-Castillo B, Lopez-Bonet E, et al. The anti-diabetic drug metformin suppresses the metastasis-associated protein CD24 in MDA-MB-468 triple-negative breast cancer cells. Oncol Rep. 2011;25:135–40.

    CAS  PubMed  Google Scholar 

  21. Wu B, Li S, Sheng L, Zhu J, Gu L, Shen H, et al. Metformin inhibits the development and metastasis of ovarian cancer. Oncol Rep. 2012;28:903–8.

    CAS  PubMed  Google Scholar 

  22. Cerezo M, Tichet M, Abbe P, Ohanna M, Lehraiki A, Rouaud F, et al. Metformin blocks melanoma invasion and metastasis development in AMPK/p53-dependent manner. Mol Cancer Ther. 2013;12:1605–15.

    Article  CAS  PubMed  Google Scholar 

  23. Xu X, Fan Z, Kang L, Han J, Jiang C, Zheng X, et al. Hepatitis B virus X protein represses miRNA-148a to enhance tumorigenesis. J Clin Invest. 2013;123:630–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Madani A, Jozaghi Y, Tabah R, How J, Mitmaker E. Rare metastases of well-differentiated thyroid cancers: a systematic review. Ann Surg Oncol. 2014;22(2):460–6.

    Article  PubMed  Google Scholar 

  25. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005;12:245–62.

    Article  CAS  PubMed  Google Scholar 

  26. Abubaker J, Jehan Z, Bavi P, Sultana M, Al-Harbi S, Ibrahim M, et al. Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a Middle Eastern population. J Clin Endocrinol Metab. 2008;93:611–8.

    Article  CAS  PubMed  Google Scholar 

  27. Murugan AK, Xing M. Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res. 2011;71:4403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cai X, Hu X, Cai B, Wang Q, Li Y, Tan X, et al. Metformin suppresses hepatocellular carcinoma cell growth through induction of cell cycle G1/G0 phase arrest and p21CIP and p27KIP expression and downregulation of cyclin D1 in vitro and in vivo. Oncol Rep. 2013;30:2449–57.

    CAS  PubMed  Google Scholar 

  29. Dai M, Al-Odaini AA, Fils-Aime N, Villatoro MA, Guo J, Arakelian A, et al. Cyclin D1 cooperates with p21 to regulate TGFbeta-mediated breast cancer cell migration and tumor local invasion. Breast Cancer Res. 2013;15:R49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marfil V, Blazquez M, Serrano F, Castell JV, Bort R. Growth-promoting and tumourigenic activity of c-Myc is suppressed by Hhex. Oncogene. 2014. doi:10.1038/onc.2014.240.

    PubMed  Google Scholar 

  31. Zhou W, Feng X, Ren C, Jiang X, Liu W, Huang W, et al. Over-expression of BCAT1, a c-Myc target gene, induces cell proliferation, migration and invasion in nasopharyngeal carcinoma. Mol Cancer. 2013;12:53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9–22.

    Article  CAS  PubMed  Google Scholar 

  33. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36:320–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mimeault M, Batra SK. Interplay of distinct growth factors during epithelial mesenchymal transition of cancer progenitor cells and molecular targeting as novel cancer therapies. Ann Oncol. 2007;18:1605–19.

    Article  CAS  PubMed  Google Scholar 

  35. Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo B, Joven J, Menendez JA. Metformin against TGFbeta-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis. Cell Cycle. 2010;9:4461–8.

    Article  CAS  PubMed  Google Scholar 

  36. Lee JH, Kim JH, Kim JS, Chang JW, Kim SB, Park JS, et al. AMP-activated protein kinase inhibits TGF-beta-, angiotensin II-, aldosterone-, high glucose-, and albumin-induced epithelial-mesenchymal transition. Am J Physiol Renal Physiol. 2013;304:F686–97.

    Article  CAS  PubMed  Google Scholar 

  37. Li L, Han R, Xiao H, Lin C, Wang Y, Liu H, et al. Metformin sensitizes EGFR-TKI-resistant human lung cancer cells in vitro and in vivo through inhibition of IL-6 signaling and EMT reversal. Clin Cancer Res. 2014;20:2714–26.

    Article  CAS  PubMed  Google Scholar 

  38. Chou CC, Lee KH, Lai IL, Wang D, Mo X, Kulp SK, et al. AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signaling axis. Cancer Res. 2014;74:4783–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. JT Dou for his help and support.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lanmin Lu or Zhongyi Fan.

Additional information

Baiyu Han, Hanzhi Cui, and Lei Kang contributed equally to this work. The 264 Hospital of PLA Chinese and PLA General Hospital also contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(PDF 34 kb)

Supplementary Fig. 2

(PDF 801 kb)

Supplementary Fig. 3

(PDF 487 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Cui, H., Kang, L. et al. Metformin inhibits thyroid cancer cell growth, migration, and EMT through the mTOR pathway. Tumor Biol. 36, 6295–6304 (2015). https://doi.org/10.1007/s13277-015-3315-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3315-4

Keywords

Navigation