Skip to main content

Advertisement

Log in

Down-regulation of miR-144 promotes thyroid cancer cell invasion by targeting ZEB1 and ZEB2

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Thyroid cancer is the most common endocrine malignancy, and its incidence has increased rapidly worldwide. The molecular mechanisms underlying thyroid cancer tumorigenesis still need to be further investigated. MicroRNAs (miRNAs), short RNA molecules of approximately 22 nucleotides in length, play crucial roles in tumorigenesis. In the present study, we found that the expression of miR-144 was significantly down-regulated in thyroid cancer as compared with that in normal thyroid tissues, suggesting that miR-144 may be involved in thyroid cancer tumorigenesis. Moreover, our results showed that restoration of miR-144 in K1 and WRO thyroid cancer cells could suppress the invasion and migration capability of these cells. We also demonstrated that miR-144 suppressed the expression of ZEB1 and ZEB2, two E-cadherin suppressors, by directly binding to their 3′-untranslated regions. Furthermore, restoration of ZEB1 or ZEB2 partially rescued the miR-144-induced inhibition of cell invasion. These data suggest miR-144 function as a tumor suppressor in thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Xing, B.R. Haugen, M. Schlumberger, Progress in molecular-based management of differentiated thyroid cancer. Lancet 381, 1058–1069 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. S.I. Sherman, Thyroid carcinoma. Lancet 361, 501–511 (2003)

    Article  PubMed  Google Scholar 

  3. V.V. Vasko, M. Saji, Molecular mechanisms involved in differentiated thyroid cancer invasion and metastasis. Curr. Opin. Oncol. 19, 11–17 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. Q. Yang, M. Ji, H. Guan, B. Shi, P. Hou, Shikonin inhibits thyroid cancer cell growth and invasiveness through targeting major signaling pathways. J. Clin. Endocrinol. Metab. 98, E1909–E1917 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. V. Ambros, Micrornas: tiny regulators with great potential. Cell 107, 823–826 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. X.S. Ke, C.M. Liu, D.P. Liu, C.C. Liang, Micrornas: key participants in gene regulatory networks. Curr. Opin. Chem. Biol. 7, 516–523 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. G.A. Calin, C.M. Croce, Microrna signatures in human cancers. Nat. Rev. Cancer 6, 857–866 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. C.Z. Chen, Micrornas as oncogenes and tumor suppressors. N. Engl. J. Med. 353, 1768–1771 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. A. de la Chapelle, K. Jazdzewski, Micrornas in thyroid cancer. J. Clin. Endocrinol. Metab. 96, 3326–3336 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  10. H. He, K. Jazdzewski, W. Li, S. Liyanarachchi, R. Nagy, S. Volinia, G.A. Calin, C.G. Liu, K. Franssila, S. Suster, R.T. Kloos, C.M. Croce, A. de la Chapelle, The role of microrna genes in papillary thyroid carcinoma. Proc. Natl. Acad. Sci. USA 102, 19075–19080 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. J.C. Ricarte-Filho, C.S. Fuziwara, A.S. Yamashita, E. Rezende, M.J. da-Silva, E.T. Kimura, Effects of let-7 microrna on cell growth and differentiation of papillary thyroid cancer. Transl. Oncol. 2, 236–241 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  12. H.M. Namlos, L.A. Meza-Zepeda, T. Baroy, I.H. Ostensen, S.H. Kresse, M.L. Kuijjer, M. Serra, H. Burger, A.M. Cleton-Jansen, O. Myklebost, Modulation of the osteosarcoma expression phenotype by micrornas. PLoS One 7, e48086 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  13. M. Guled, L. Lahti, P.M. Lindholm, K. Salmenkivi, I. Bagwan, A.G. Nicholson, S. Knuutila, Cdkn2a, nf2, and jun are dysregulated among other genes by mirnas in malignant mesothelioma-a mirna microarray analysis. Genes Chromosome Cancer 48, 615–623 (2009)

    Article  CAS  Google Scholar 

  14. S. Akiyoshi, T. Fukagawa, H. Ueo, M. Ishibashi, Y. Takahashi, M. Fabbri, M. Sasako, Y. Maehara, K. Mimori, M. Mori, Clinical significance of mir-144-zfx axis in disseminated tumour cells in bone marrow in gastric cancer cases. Br. J. Cancer 107, 1345–1353 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. S.M. Sureban, R. May, F.G. Mondalek, D. Qu, S. Ponnurangam, P. Pantazis, S. Anant, R.P. Ramanujam, C.W. Houchen, Nanoparticle-based delivery of sidcamkl-1 increases microrna-144 and inhibits colorectal cancer tumor growth via a notch-1 dependent mechanism. J. Nanobiotechnol. 9, 40 (2011)

    Article  CAS  Google Scholar 

  16. L.Y. Zhang, V. Ho-Fun Lee, A.M. Wong, D.L. Kwong, Y.H. Zhu, S.S. Dong, K.L. Kong, J. Chen, S.W. Tsao, X.Y. Guan, L. Fu, Microrna-144 promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma through repression of pten. Carcinogenesis 34, 454–463 (2013)

    Article  PubMed  Google Scholar 

  17. S. Cahill, P. Smyth, K. Denning, R. Flavin, J. Li, A. Potratz, S.M. Guenther, R. Henfrey, J.J. O’Leary, O. Sheils, Effect of brafv600e mutation on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol. Cancer 6, 21 (2007)

    Article  PubMed Central  PubMed  Google Scholar 

  18. M. Rossing, R. Borup, R. Henao, O. Winther, J. Vikesaa, O. Niazi, C. Godballe, A. Krogdahl, M. Glud, C. Hjort-Sorensen, K. Kiss, F.N. Bennedbaek, F.C. Nielsen, Down-regulation of micrornas controlling tumourigenic factors in follicular thyroid carcinoma. J. Mol. Endocrinol. 48, 11–23 (2012)

    Article  CAS  PubMed  Google Scholar 

  19. M. Swierniak, A. Wojcicka, M. Czetwertynska, E. Stachlewska, M. Maciag, W. Wiechno, B. Gornicka, M. Bogdanska, L. Koperski, A. de la Chapelle, K. Jazdzewski, In-depth characterization of the microrna transcriptome in normal thyroid and papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 98, E1401–E1409 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. S. Brabletz, T. Brabletz, The zeb/mir-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Rep. 11, 670–677 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. E.M. Hurt, J.N. Saykally, B.M. Anose, K.R. Kalli, M.M. Sanders, Expression of the zeb1 (deltaef1) transcription factor in human: additional insights. Mol. Cell. Biochem. 318, 89–99 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. J. Comijn, G. Berx, P. Vermassen, K. Verschueren, L. van Grunsven, E. Bruyneel, M. Mareel, D. Huylebroeck, F. van Roy, The two-handed e box binding zinc finger protein sip1 downregulates e-cadherin and induces invasion. Mol. Cell 7, 1267–1278 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. K. Aigner, L. Descovich, M. Mikula, A. Sultan, B. Dampier, S. Bonne, F. van Roy, W. Mikulits, M. Schreiber, T. Brabletz, W. Sommergruber, N. Schweifer, A. Wernitznig, H. Beug, R. Foisner, A. Eger, The transcription factor zeb1 (deltaef1) represses plakophilin 3 during human cancer progression. FEBS Lett. 581, 1617–1624 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. T.R. Graham, H.E. Zhau, V.A. Odero-Marah, A.O. Osunkoya, K.S. Kimbro, M. Tighiouart, T. Liu, J.W. Simons, R.M. O’Regan, Insulin-like growth factor-i-dependent up-regulation of zeb1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 68, 2479–2488 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. S. Spaderna, O. Schmalhofer, F. Hlubek, G. Berx, A. Eger, S. Merkel, A. Jung, T. Kirchner, T. Brabletz, A transient, emt-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 131, 830–840 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. U. Wellner, J. Schubert, U.C. Burk, O. Schmalhofer, F. Zhu, A. Sonntag, B. Waldvogel, C. Vannier, D. Darling, A. Zur Hausen, V.G. Brunton, J. Morton, O. Sansom, J. Schuler, M.P. Stemmler, C. Herzberger, U. Hopt, T. Keck, S. Brabletz, T. Brabletz, The emt-activator zeb1 promotes tumorigenicity by repressing stemness-inhibiting micrornas. Nat. Cell Biol. 11, 1487–1495 (2009)

    Article  CAS  PubMed  Google Scholar 

  27. H. Guan, G. Wei, J. Wu, D. Fang, Z. Liao, H. Xiao, M. Li, Y. Li, Down-regulation of mir-218-2 and its host gene slit3 cooperate to promote invasion and progression of thyroid cancer. J. Clin. Endocrinol. Metab. 98, E1334–E1344 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. Cancer Genome Atlas Research, Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008)

    Article  Google Scholar 

  29. B.P. Lewis, C.B. Burge, D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microrna targets. Cell 120, 15–20 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. A.J. Enright, B. John, U. Gaul, T. Tuschl, C. Sander, D.S. Marks, Microrna targets in drosophila. Genome Biol. 5, R1 (2003)

    Article  PubMed Central  PubMed  Google Scholar 

  31. J. Hou, L. Lin, W. Zhou, Z. Wang, G. Ding, Q. Dong, L. Qin, X. Wu, Y. Zheng, Y. Yang, W. Tian, Q. Zhang, C. Wang, Q. Zhang, S.M. Zhuang, L. Zheng, A. Liang, W. Tao, X. Cao, Identification of mirnomes in human liver and hepatocellular carcinoma reveals mir-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 19, 232–243 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. T. Iwaya, T. Yokobori, N. Nishida, R. Kogo, T. Sudo, F. Tanaka, K. Shibata, G. Sawada, Y. Takahashi, M. Ishibashi, G. Wakabayashi, M. Mori, K. Mimori, Downregulation of mir-144 is associated with colorectal cancer progression via activation of mtor signaling pathway. Carcinogenesis 33, 2391–2397 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. Y. Guo, L. Ying, Y. Tian, P. Yang, Y. Zhu, Z. Wang, F. Qiu, J. Lin, Mir-144 downregulation increases bladder cancer cell proliferation by targeting EZH2 and regulating Wnt signaling. FEBS J. 280, 4531–4538 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. S.M. Park, A.B. Gaur, E. Lengyel, M.E. Peter, The mir-200 family determines the epithelial phenotype of cancer cells by targeting the e-cadherin repressors zeb1 and zeb2. Genes Dev. 22, 894–907 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Y. Arima, H. Hayashi, M. Sasaki, M. Hosonaga, T.M. Goto, T. Chiyoda, S. Kuninaka, T. Shibata, H. Ohata, H. Nakagama, Y. Taya, H. Saya, Induction of zeb proteins by inactivation of rb protein is key determinant of mesenchymal phenotype of breast cancer. J. Biol. Chem. 287, 7896–7906 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. J. Braun, C. Hoang-Vu, H. Dralle, S. Huttelmaier, Downregulation of micrornas directs the emt and invasive potential of anaplastic thyroid carcinomas. Oncogene 29, 4237–4244 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. A. Hebrant, G. Dom, M. Dewaele, G. Andry, C. Tresallet, E. Leteurtre, J.E. Dumont, C. Maenhaut, mrna expression in papillary and anaplastic thyroid carcinoma: molecular anatomy of a killing switch. PLoS One 7, e37807 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. C. Montemayor-Garcia, H. Hardin, Z. Guo, C. Larrain, D. Buehler, S. Asioli, H. Chen, R.V. Lloyd, The role of epithelial mesenchymal transition markers in thyroid carcinoma progression. Endocr. Pathol. 24, 206–212 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. F. De Amicis, A. Perri, D. Vizza, A. Russo, M.L. Panno, D. Bonofiglio, C. Giordano, L. Mauro, S. Aquila, D. Tramontano, S. Ando, Epigallocatechin gallate inhibits growth and epithelial-to-mesenchymal transition in human thyroid carcinoma cell lines. J. Cell. Physiol. 228, 2054–2062 (2013)

    Article  PubMed  Google Scholar 

  40. X. Meng, D.H. Kong, N. Li, Z.H. Zong, B.Q. Liu, Z.X. Du, Y. Guan, L. Cao, H.Q. Wang, Knockdown of bag3 induces epithelial-mesenchymal transition in thyroid cancer cells through zeb1 activation. Cell Death Dis. 5, e1092 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Natural Science Foundation of China (No. 81370076); Doctoral Fund of Ministry of Education, China (No. 20130171110067); Guangzhou Municipal Science and Technology special fund (No. 1346000270); Industrial Technology Research and Development funding projects, Guangdong Province (No. 2012A030400006); Young Teachers Cultivate Projects of Sun Yat-sen University (No. 13ykpy15); Key Medical Laboratory of Guangdong Province.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbing Li.

Additional information

Hongyu Guan and Weiwei Liang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, H., Liang, W., Xie, Z. et al. Down-regulation of miR-144 promotes thyroid cancer cell invasion by targeting ZEB1 and ZEB2. Endocrine 48, 566–574 (2015). https://doi.org/10.1007/s12020-014-0326-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0326-7

Keywords

Navigation