Skip to main content

Advertisement

Log in

Skeletal and extraskeletal actions of denosumab

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Osteoclasts and osteoblasts define skeletal mass, structure and strength through their respective actions in resorbing and forming bone. This remodeling process is orchestrated by the actions of hormones and growth factors, which regulate a cytokine system comprising the receptor activator of nuclear factor κB ligand (RANKL), its receptor RANK and the soluble decoy receptor osteoprotegerin (OPG). Bone resorption depends on RANKL, which determines osteoclast formation, activity and survival. Importantly, cells of the osteoblastic lineage mainly provide RANKL and therefore, are central in the regulation of osteoclast functions. Catabolic effects of RANKL are inhibited by OPG, a TNF receptor family member that binds RANKL, thereby preventing the activation of its receptor RANK, which is expressed by osteoclast precursors. Because this cytokine network is pivotal for the regulation of bone mass in health and diseases, including osteoporosis, rheumatoid arthritis and malignant bone conditions, it has been successfully used for the generation of a targeted therapy to block osteoclast actions. The clinical approval of denosumab, a fully monoclonal antibody against RANKL, provides a novel option to treat bone diseases with a potent, targeted and reversible inhibitor of bone resorption. Although RANKL is also expressed by endothelial cells, T lymphocytes, synovial fibroblasts and various tumor cells, no meaningful clinical extraskeletal effects have been reported after administration of denosumab. This article summarizes the molecular and cellular basis of the RANKL/RANK/OPG system and presents preclinical and clinical studies on the skeletal actions of denosumab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. H. Yasuda, N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. Mochizuki, A. Tomoyasu, K. Yano, M. Goto, A. Murakami, E. Tsuda, T. Morinaga, K. Higashio, N. Udagawa, N. Takahashi, T. Suda, Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA 95, 3597–3602 (1998)

    Article  PubMed  CAS  Google Scholar 

  2. L.C. Hofbauer, A.E. Heufelder, Clinical review 114: hot topic. The role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in the pathogenesis and treatment of metabolic bone diseases. J. Clin. Endocrinol. Metab. 85, 2355–2363 (2000)

    Article  PubMed  CAS  Google Scholar 

  3. P. Collin-Osdoby, Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ. Res. 95, 1046–1057 (2004)

    Article  PubMed  CAS  Google Scholar 

  4. G. Silvestrini, P. Ballanti, F. Patacchioli, M. Leopizzi, N. Gualtieri, P. Monnazzi, E. Tremante, D. Sardella, E. Bonucci, Detection of osteoprotegerin (OPG) and its ligand (RANKL) mRNA and protein in femur and tibia of the rat. J. Mol. Histol. 36, 59–67 (2005)

    Article  PubMed  CAS  Google Scholar 

  5. T. Nakashima, M. Hayashi, T. Fukunaga, K. Kurata, M. Oh-Hora, J.Q. Feng, L.F. Bonewald, T. Kodama, A. Wutz, E.F. Wagner, J.M. Penninger, H. Takayanagi, Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011)

    Article  PubMed  CAS  Google Scholar 

  6. H. Hsu, D.L. Lacey, C.R. Dunstan, I. Solovyev, A. Colombero, E. Timms, H.L. Tan, G. Elliott, M.J. Kelley, I. Sarosi, L. Wang, X.Z. Xia, R. Elliott, L. Chiu, T. Black, S. Scully, C. Capparelli, S. Morony, G. Shimamoto, M.B. Bass, W.J. Boyle, Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl Acad. Sci. USA 96, 3540–3545 (1999)

    Article  PubMed  CAS  Google Scholar 

  7. J.-K. Min, Y.-M. Kim, Y.-M. Kim, E.-C. Kim, Y.S. Gho, I.-J. Kang, S.-Y. Lee, Y.-Y. Kong, Y.-G. Kwon, Vascular endothelial growth factor up-regulates expression of receptor activator of NF-kappa B (RANK) in endothelial cells. Concomitant increase of angiogenic responses to RANK ligand. J. Biol. Chem. 278, 39548–39557 (2003)

    Article  PubMed  CAS  Google Scholar 

  8. S. Panizo, A. Cardus, M. Encinas, E. Parisi, P. Valcheva, S. López-Ongil, B. Coll, E. Fernandez, J.M. Valdivielso, RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway. Circ. Res. 104, 1041–1048 (2009)

    Article  PubMed  CAS  Google Scholar 

  9. D. Santini, G. Schiavon, B. Vincenzi, L. Gaeta, F. Pantano, A. Russo, C. Ortega, C. Porta, S. Galluzzo, G. Armento, N. La Verde, C. Caroti, I. Treilleux, A. Ruggiero, G. Perrone, R. Addeo, P. Clezardin, A.O. Muda, G. Tonini, Receptor activator of NF-kB (RANK) expression in primary tumors associates with bone metastasis occurrence in breast cancer patients. PLoS ONE 6, e19234 (2011)

    Article  PubMed  CAS  Google Scholar 

  10. W.C. Dougall, M. Glaccum, K. Charrier, K. Rohrbach, K. Brasel, T. De Smedt, E. Daro, J. Smith, M.E. Tometsko, C.R. Maliszewski, A. Armstrong, V. Shen, S. Bain, D. Cosman, D. Anderson, P.J. Morrissey, J.J. Peschon, J. Schuh, RANK is essential for osteoclast and lymph node development. Genes Dev. 13, 2412–2424 (1999)

    Article  PubMed  CAS  Google Scholar 

  11. Y.Y. Kong, H. Yoshida, I. Sarosi, H.L. Tan, E. Timms, C. Capparelli, S. Morony, A.J. Oliveira-dos-Santos, G. Van, A. Itie, W. Khoo, A. Wakeham, C.R. Dunstan, D.L. Lacey, T.W. Mak, W.J. Boyle, J.M. Penninger, OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999)

    Article  PubMed  CAS  Google Scholar 

  12. J.E. Fata, Y.Y. Kong, J. Li, T. Sasaki, J. Irie-Sasaki, R.A. Moorehead, R. Elliott, S. Scully, E.B. Voura, D.L. Lacey, W.J. Boyle, R. Khokha, J.M. Penninger, The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103, 41–50 (2000)

    Article  PubMed  CAS  Google Scholar 

  13. L.C. Hofbauer, A.E. Heufelder, Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J. Mol. Med. 79, 243–253 (2001)

    Article  PubMed  CAS  Google Scholar 

  14. W.S. Simonet, D.L. Lacey, C.R. Dunstan, M. Kelley, M.S. Chang, R. Lüthy, H.Q. Nguyen, S. Wooden, L. Bennett, T. Boone, G. Shimamoto, M. DeRose, R. Elliott, A. Colombero, H.L. Tan, G. Trail, J. Sullivan, E. Davy, N. Bucay, L. Renshaw-Gegg, T.M. Hughes, D. Hill, W. Pattison, P. Campbell, S. Sander, G. Van, J. Tarpley, P. Derby, R. Lee, W.J. Boyle, Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997)

    Article  PubMed  CAS  Google Scholar 

  15. T.L. Burgess, Y. Qian, S. Kaufman, B.D. Ring, G. Van, C. Capparelli, M. Kelley, H. Hsu, W.J. Boyle, C.R. Dunstan, S. Hu, D.L. Lacey, The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J. Cell Biol. 145, 527–538 (1999)

    Article  PubMed  CAS  Google Scholar 

  16. D.L. Lacey, H.L. Tan, J. Lu, S. Kaufman, G. Van, W. Qiu, A. Rattan, S. Scully, F. Fletcher, T. Juan, M. Kelley, T.L. Burgess, W.J. Boyle, A.J. Polverino, Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am. J. Pathol. 157, 435–448 (2000)

    Article  PubMed  CAS  Google Scholar 

  17. G. Eghbali-Fatourechi, S. Khosla, A. Sanyal, W.J. Boyle, D.L. Lacey, B.L. Riggs, Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J. Clin. Invest. 111, 1221–1230 (2003)

    PubMed  CAS  Google Scholar 

  18. C. von Tirpitz, S. Epp, J. Klaus, R. Mason, G. Hawa, N. Brinskelle-Schmal, L.C. Hofbauer, G. Adler, W. Kratzer, M. Reinshagen, Effect of systemic glucocorticoid therapy on bone metabolism and the osteoprotegerin system in patients with active Crohn’s disease. Eur. J. Gastroenterol. 15, 1165–1170 (2003)

    Article  Google Scholar 

  19. H. Mori, R. Kitazawa, S. Mizuki, M. Nose, S. Maeda, S. Kitazawa, RANK ligand, RANK, and OPG expression in type II collagen-induced arthritis mouse. Histochem. Cell Biol. 117, 283–292 (2002)

    Article  PubMed  CAS  Google Scholar 

  20. T. Standal, C. Seidel, Ø. Hjertner, T. Plesner, R.D. Sanderson, A. Waage, M. Borset, A. Sundan, Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells. Blood 100, 3002–3007 (2002)

    Article  PubMed  CAS  Google Scholar 

  21. T. Michigami, M. Ihara-Watanabe, M. Yamazaki, K. Ozono, Receptor activator of nuclear factor kappaB ligand (RANKL) is a key molecule of osteoclast formation for bone metastasis in a newly developed model of human neuroblastoma. Cancer Res. 61, 1637–1644 (2001)

    PubMed  CAS  Google Scholar 

  22. W. Lieb, P. Gona, M.G. Larson, J.M. Massaro, I. Lipinska, J.F. Keaney, J. Rong, D. Corey, U. Hoffmann, C.S. Fox, R.S. Vasan, E.J. Benjamin, C.J. O’Donnell, S. Kathiresan, Biomarkers of the osteoprotegerin pathway: clinical correlates, subclinical disease, incident cardiovascular disease, and mortality. Arterioscler. Thromb. Vasc. Biol. 30, 1849–1854 (2010)

    Article  PubMed  CAS  Google Scholar 

  23. J.-J. Body, P. Greipp, R.E. Coleman, T. Facon, F. Geurs, J.-P. Fermand, J.-L. Harousseau, A. Lipton, X. Mariette, C.D. Williams, A. Nakanishi, D. Holloway, S.W. Martin, C.R. Dunstan, P.J. Bekker, A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer 97, 887–892 (2003)

    Article  PubMed  Google Scholar 

  24. L.M. Weiner, Fully human therapeutic monoclonal antibodies. J. Immunother. 29, 1–9 (1997)

    Article  Google Scholar 

  25. P.J. Kostenuik, Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr. Opin. Pharmacol. 5, 618–625 (2005)

    Article  PubMed  CAS  Google Scholar 

  26. Y.Y. Yuan, P.J. Kostenuik, M.S. Ominsky, S. Morony, S. Adamu, D.T. Simionescu, D.M. Basalyga, F.J. Asuncion, T.A. Bateman, Skeletal deterioration induced by RANKL infusion: a model for high-turnover bone disease. Osteoporos. Int. 19, 625–635 (2008)

    Article  PubMed  CAS  Google Scholar 

  27. S.A.J. Lloyd, Y.Y. Yuan, P.J. Kostenuik, M.S. Ominsky, A.G. Lau, S. Morony, M. Stolina, F.J. Asuncion, T.A. Bateman, Soluble RANKL induces high bone turnover and decreases bone volume, density, and strength in mice. Calcif. Tissue Int. 82, 361–372 (2008)

    Article  PubMed  CAS  Google Scholar 

  28. S. Kwan Tat, M. Padrines, S. Théoleyre, D. Heymann, Y. Fortun, IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 15, 49–60 (2004)

    Article  PubMed  CAS  Google Scholar 

  29. C. Capparelli, S. Morony, K. Warmington, S. Adamu, D. Lacey, C.R. Dunstan, B. Stouch, S. Martin, P.J. Kostenuik, Sustained antiresorptive effects after a single treatment with human recombinant osteoprotegerin (OPG): a pharmacodynamic and pharmacokinetic analysis in rats. J. Bone Miner. Res. 18, 852–858 (2003)

    Article  PubMed  CAS  Google Scholar 

  30. M.S. Ominsky, P.J. Kostenuik, P. Cranmer, S.Y. Smith, J.E. Atkinson, The RANKL inhibitor OPG-Fc increases cortical and trabecular bone mass in young gonad-intact cynomolgus monkeys. Osteoporos. Int. 18, 1073–1082 (2007)

    Article  PubMed  CAS  Google Scholar 

  31. T. Yoneda, N. Ishimaru, R. Arakaki, M. Kobayashi, T. Izawa, K. Moriyama, Y. Hayashi, Estrogen deficiency accelerates murine autoimmune arthritis associated with receptor activator of nuclear factor-kappa B ligand-mediated osteoclastogenesis. Endocrinology 145, 2384–2391 (2004)

    Article  PubMed  CAS  Google Scholar 

  32. T. Miyazaki, T. Matsunaga, S. Miyazaki, S. Hokari, T. Komoda, Changes in receptor activator of nuclear factor-kappaB, and its ligand, osteoprotegerin, bone-type alkaline phosphatase, and tartrate-resistant acid phosphatase in ovariectomized rats. J. Cell. Biochem. 93, 503–512 (2004)

    Article  PubMed  CAS  Google Scholar 

  33. F.-S. Wang, J.-Y. Ko, C.-L. Lin, H.-L. Wu, H.-J. Ke, P.-J. Tai, Knocking down dickkopf-1 alleviates estrogen deficiency induction of bone loss. A histomorphological study in ovariectomized rats. Bone 40, 485–492 (2007)

    Article  PubMed  CAS  Google Scholar 

  34. T. Ikeda, M. Utsuyama, K. Hirokawa, Expression profiles of receptor activator of nuclear factor kappaB ligand, receptor activator of nuclear factor kappaB, and osteoprotegerin messenger RNA in aged and ovariectomized rat bones. J. Bone Miner. Res. 16, 1416–1425 (2001)

    Article  PubMed  CAS  Google Scholar 

  35. M.S. Ominsky, X. Li, F.J. Asuncion, M. Barrero, K.S. Warmington, D. Dwyer, M. Stolina, Z. Geng, M. Grisanti, H.-L. Tan, T. Corbin, J. McCabe, W.S. Simonet, H.Z. Ke, P.J. Kostenuik, RANKL inhibition with osteoprotegerin increases bone strength by improving cortical and trabecular bone architecture in ovariectomized rats. J. Bone Miner. Res. 23, 672–682 (2008)

    Article  PubMed  CAS  Google Scholar 

  36. M. Gunness, E. Orwoll, Early induction of alterations in cancellous and cortical bone histology after orchiectomy in mature rats. J. Bone Miner. Res. 10, 1735–1744 (1995)

    Article  PubMed  CAS  Google Scholar 

  37. R.S. Weinstein, R.L. Jilka, A.M. Parfitt, S.C. Manolagas, The effects of androgen deficiency on murine bone remodeling and bone mineral density are mediated via cells of the osteoblastic lineage. Endocrinology 138, 4013–4021 (1997)

    Article  PubMed  CAS  Google Scholar 

  38. D.M. Huber, A.C. Bendixen, P. Pathrose, S. Srivastava, K.M. Dienger, N.K. Shevde, J.W. Pike, Androgens suppress osteoclast formation induced by RANKL and macrophage-colony stimulating factor. Endocrinology 142, 3800–3808 (2001)

    Article  PubMed  CAS  Google Scholar 

  39. L. Pederson, M. Kremer, J. Judd, D. Pascoe, T.C. Spelsberg, B.L. Riggs, M.J. Oursler, Androgens regulate bone resorption activity of isolated osteoclasts in vitro. Proc. Natl Acad. Sci. USA 96, 505–510 (1999)

    Article  PubMed  CAS  Google Scholar 

  40. Q. Chen, H. Kaji, M. Kanatani, T. Sugimoto, K. Chihara, Testosterone increases osteoprotegerin mRNA expression in mouse osteoblast cells. Horm. Metab. Res. 36, 674–678 (2004)

    Article  PubMed  CAS  Google Scholar 

  41. L.C. Hofbauer, K.C. Hicok, D. Chen, S. Khosla, Regulation of osteoprotegerin production by androgens and anti-androgens in human osteoblastic lineage cells. Eur. J. Endocrinol. 147, 269–273 (2002)

    Article  PubMed  CAS  Google Scholar 

  42. V. Proell, H. Xu, C. Schüler, K. Weber, L.C. Hofbauer, R.G. Erben, Orchiectomy upregulates free soluble RANKL in bone marrow of aged rats. Bone 45, 677–681 (2009)

    Article  PubMed  CAS  Google Scholar 

  43. X. Li, M.S. Ominsky, M. Stolina, K.S. Warmington, Z. Geng, Q.-T. Niu, F.J. Asuncion, H.-L. Tan, M. Grisanti, D. Dwyer, S. Adamu, H.Z. Ke, W.S. Simonet, P.J. Kostenuik, Increased RANK ligand in bone marrow of orchiectomized rats and prevention of their bone loss by the RANK ligand inhibitor osteoprotegerin. Bone 45, 669–676 (2009)

    Article  PubMed  CAS  Google Scholar 

  44. R.T. Turner, G.K. Wakley, K.S. Hannon, Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J. Orthop. Res. 8, 612–617 (1990)

    Article  PubMed  CAS  Google Scholar 

  45. E. Romas, O. Bakharevski, D.K. Hards, V. Kartsogiannis, J.M. Quinn, P.F. Ryan, T.J. Martin, M.T. Gillespie, Expression of osteoclast differentiation factor at sites of bone erosion in collagen-induced arthritis. Arthritis Rheum. 43, 821–826 (2000)

    Article  PubMed  CAS  Google Scholar 

  46. M. Stolina, S. Adamu, M. Ominsky, D. Dwyer, F. Asuncion, Z. Geng, S. Middleton, H. Brown, J. Pretorius, G. Schett, B. Bolon, U. Feige, D. Zack, P.J. Kostenuik, RANKL is a marker and mediator of local and systemic bone loss in two rat models of inflammatory arthritis. J. Bone Miner. Res. 20, 1756–1765 (2005)

    Article  PubMed  CAS  Google Scholar 

  47. Y.Y. Kong, U. Feige, I. Sarosi, B. Bolon, A. Tafuri, S. Morony, C. Capparelli, J. Li, R. Elliott, S. McCabe, T. Wong, G. Campagnuolo, E. Moran, E.R. Bogoch, G. Van, L.T. Nguyen, P.S. Ohashi, D.L. Lacey, E. Fish, W.J. Boyle, J.M. Penninger, Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304–309 (1999)

    Article  PubMed  CAS  Google Scholar 

  48. M. Stolina, B. Bolon, S. Middleton, D. Dwyer, H. Brown, D. Duryea, L. Zhu, A. Rohner, J. Pretorius, P. Kostenuik, U. Feige, D. Zack, The evolving systemic and local biomarker milieu at different stages of disease progression in rat adjuvant-induced arthritis. J. Clin. Immunol. 29, 158–174 (2009)

    Article  PubMed  CAS  Google Scholar 

  49. B. Bolon, G. Campagnuolo, U. Feige, Duration of bone protection by a single osteoprotegerin injection in rats with adjuvant-induced arthritis. Cell. Mol. Life Sci. 59, 1569–1576 (2002)

    Article  PubMed  CAS  Google Scholar 

  50. M. Stolina, G. Schett, D. Dwyer, S. Vonderfecht, S. Middleton, D. Duryea, E. Pacheco, G. Van, B. Bolon, U. Feige, D. Zack, P. Kostenuik, RANKL inhibition by osteoprotegerin prevents bone loss without affecting local or systemic inflammation parameters in two rat arthritis models: comparison with anti-TNFalpha or anti-IL-1 therapies. Arthritis Res. Ther. 11, R187 (2009)

    Article  PubMed  CAS  Google Scholar 

  51. G. Schett, S. Middleton, B. Bolon, M. Stolina, H. Brown, L. Zhu, J. Pretorius, D.J. Zack, P. Kostenuik, U. Feige, Additive bone-protective effects of anabolic treatment when used in conjunction with RANKL and tumor necrosis factor inhibition in two rat arthritis models. Arthritis Rheum. 52, 1604–1611 (2005)

    Article  PubMed  CAS  Google Scholar 

  52. K. Redlich, B. Görtz, S. Hayer, J. Zwerina, N. Doerr, P. Kostenuik, H. Bergmeister, G. Kollias, G. Steiner, J.S. Smolen, G. Schett, Repair of local bone erosions and reversal of systemic bone loss upon therapy with anti-tumor necrosis factor in combination with osteoprotegerin or parathyroid hormone in tumor necrosis factor-mediated arthritis. Am. J. Pathol. 164, 543–555 (2004)

    Article  PubMed  CAS  Google Scholar 

  53. N. Saidenberg-Kermanac’h, A. Corrado, D. Lemeiter, M.C. deVernejoul, M.C. Boissier, M.E. Cohen-Solal, TNF-alpha antibodies and osteoprotegerin decrease systemic bone loss associated with inflammation through distinct mechanisms in collagen-induced arthritis. Bone 35, 1200–1207 (2004)

    Article  PubMed  CAS  Google Scholar 

  54. E. Romas, N.A. Sims, D.K. Hards, M. Lindsay, J.W.M. Quinn, P.F.J. Ryan, C.R. Dunstan, T.J. Martin, M.T. Gillespie, Osteoprotegerin reduces osteoclast numbers and prevents bone erosion in collagen-induced arthritis. Am. J. Pathol. 161, 1419–1427 (2002)

    Article  PubMed  CAS  Google Scholar 

  55. R.S. Weinstein, Clinical practice. Glucocorticoid-induced bone disease. N. Engl. J. Med. 365, 62–70 (2011)

    Article  PubMed  CAS  Google Scholar 

  56. N.O. Vidal, H. Brändström, K.B. Jonsson, C. Ohlsson, Osteoprotegerin mRNA is expressed in primary human osteoblast-like cells: down-regulation by glucocorticoids. J. Endocrinol. 159, 191–195 (1998)

    Article  PubMed  CAS  Google Scholar 

  57. L.C. Hofbauer, F. Gori, B.L. Riggs, D.L. Lacey, C.R. Dunstan, T.C. Spelsberg, S. Khosla, Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 140, 4382–4389 (1999)

    Article  PubMed  CAS  Google Scholar 

  58. R.S. Weinstein, R.L. Jilka, A.M. Parfitt, S.C. Manolagas, Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J. Clin. Invest. 102, 274–282 (1998)

    Article  PubMed  CAS  Google Scholar 

  59. S. Ikeda, Y. Morishita, H. Tsutsumi, M. Ito, A. Shiraishi, S. Arita, S. Akahoshi, K. Narusawa, T. Nakamura, Reductions in bone turnover, mineral, and structure associated with mechanical properties of lumbar vertebra and femur in glucocorticoid-treated growing minipigs. Bone 33, 779–787 (2003)

    Article  PubMed  CAS  Google Scholar 

  60. P. Oelzner, S. Fleissner-Richter, R. Bräuer, G. Hein, G. Wolf, T. Neumann, Combination therapy with dexamethasone and osteoprotegerin protects against arthritis-induced bone alterations in antigen-induced arthritis of the rat. Inflamm. Res. 59, 731–741 (2010)

    Article  PubMed  CAS  Google Scholar 

  61. P.J. Bekker, D.L. Holloway, A.S. Rasmussen, R. Murphy, S.W. Martin, P.T. Leese, G.B. Holmes, C.R. Dunstan, A.M. DePaoli, A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J. Bone Miner. Res. 19, 1059–1066 (2004)

    Article  PubMed  CAS  Google Scholar 

  62. M.R. McClung, E.M. Lewiecki, S.B. Cohen, M.A. Bolognese, G.C. Woodson, A.H. Moffett, M. Peacock, P.D. Miller, S.N. Lederman, C.H. Chesnut, D. Lain, A.J. Kivitz, D.L. Holloway, C. Zhang, M.C. Peterson, P.J. Bekker, Denosumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 354, 821–831 (2006)

    Article  PubMed  CAS  Google Scholar 

  63. E.M. Lewiecki, P.D. Miller, M.R. McClung, S.B. Cohen, M.A. Bolognese, Y. Liu, A. Wang, S. Siddhanti, L.A. Fitzpatrick, A.M.G. Bone, L. Study, Two-year treatment with denosumab (AMG 162) in a randomized phase 2 study of postmenopausal women with low BMD. J. Bone Miner. Res. 22, 1832–1841 (2007)

    Article  PubMed  CAS  Google Scholar 

  64. P.D. Miller, M.A. Bolognese, E.M. Lewiecki, M.R. McClung, B. Ding, M. Austin, Y. Liu, J. San Martin, Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone 43, 222–229 (2008)

    Article  PubMed  CAS  Google Scholar 

  65. P.D. Miller, R.B. Wagman, M. Peacock, E.M. Lewiecki, M.A. Bolognese, R.L. Weinstein, B. Ding, J. San Martin, M.R. McClung, Effect of denosumab on bone mineral density and biochemical markers of bone turnover: six-year results of a phase 2 clinical trial. J. Clin. Endocrinol. Metab. 96, 394–402 (2011)

    Article  PubMed  CAS  Google Scholar 

  66. S. Boonen, S. Ferrari, P.D. Miller, E.F. Eriksen, P.N. Sambrook, J. Compston, I.R. Reid, D. Vanderschueren, F. Cosman, Postmenopausal osteoporosis treatment with antiresorptives: Effects of discontinuation or long-term continuation on bone turnover and fracture risk-a perspective. J. Bone Miner. Res. 27(5), 963–974 (2012)

    Article  PubMed  CAS  Google Scholar 

  67. G. Mazziotti, J. Bilezikian, E. Canalis, D. Cocchi, A. Giustina, New understanding and treatments for osteoporosis. Endocrine 41(1), 58–69 (2012)

    Article  PubMed  CAS  Google Scholar 

  68. J. Compston, The use of combination therapy in the treatment of postmenopausal osteoporosis. Endocrine 41(1), 11–18 (2012)

    Article  PubMed  CAS  Google Scholar 

  69. T.D. Rachner, S. Khosla, L.C. Hofbauer, Osteoporosis: now and the future. Lancet 377(9773), 1276–1287 (2011)

    Article  PubMed  CAS  Google Scholar 

  70. S.R. Cummings, J. San Martin, M.R. McClung, E.S. Siris, R. Eastell, I.R. Reid, P. Delmas, H.B. Zoog, M. Austin, A. Wang, S. Kutilek, S. Adami, J. Zanchetta, C. Libanati, S. Siddhanti, C. Christiansen, Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 361, 756–765 (2009)

    Article  PubMed  CAS  Google Scholar 

  71. E.V. McCloskey, H. Johansson, A. Oden, M. Austin, E. Siris, A. Wang, E.M. Lewiecki, R. Lorenc, C. Libanati, J.A. Kanis, Denosumab reduces the risk of osteoporotic fractures in postmenopausal women, particularly in those with moderate to high fracture risk as assessed with FRAX®. J. Bone Miner. Res. (2012). doi:10.1002/jbmr.1606

  72. J.P. Brown, R.L. Prince, C. Deal, R.R. Recker, D.P. Kiel, L.H. de Gregorio, P. Hadji, L.C. Hofbauer, J.M. Alvaro-Gracia, H. Wang, M. Austin, R.B. Wagman, R. Newmark, C. Libanati, J. San Martin, H.G. Bone, Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J. Bone Miner. Res. 24(1), 153–161 (2009)

    Article  Google Scholar 

  73. S. Papapoulos, R. Chapurlat, C. Libanati, M. Brandi, J. Brown, E. Czerwiński, M.A. Krieg, Z. Man, D. Mellström, S. Radominski, J.Y. Reginster, H. Resch, J. Román, C. Roux, E. Vittinghoff, M. Austin, N. Daizadeh, M. Bradley, A. Grauer, S. Cummings, H. Bone, Five years of denosumab exposure in women with postmenopausal osteoporosis: results from the first two years of the FREEDOM extension. J. Bone Miner. Res. 27(3), 694–701 (2011)

    Article  CAS  Google Scholar 

  74. N. Freemantle, S. Satram-Hoang, E.-T. Tang, P. Kaur, D. Macarios, S. Siddhanti, J. Borenstein, D.L. Kendler, Final results of the DAPS (denosumab adherence preference satisfaction) study: a 24-month, randomized, crossover comparison with alendronate in postmenopausal women. Osteoporos. Int. 23(1), 317–326 (2012)

    Article  PubMed  CAS  Google Scholar 

  75. R.E. Coleman, Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer Res. 12, 6243s–6249s (2006)

    Article  PubMed  Google Scholar 

  76. J. Zekri, N. Ahmed, R.E. Coleman, B.W. Hancock, The skeletal metastatic complications of renal cell carcinoma. Int. J. Oncol. 19, 379–382 (2001)

    PubMed  CAS  Google Scholar 

  77. Y. Wittrant, S. Théoleyre, C. Chipoy, M. Padrines, F. Blanchard, D. Heymann, F. Rédini, RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Biochim. Biophys. Acta 1704, 49–57 (2004)

    PubMed  CAS  Google Scholar 

  78. Bendre, M., Gaddy, D., Nicholas, R.W., Suva, L.J.: Breast cancer metastasis to bone: it is not all about PTHrP. Clin. Orthop. Relat. Res. (415 Suppl) S39–45 (2003)

  79. R.J. Thomas, T.A. Guise, J.J. Yin, J. Elliott, N.J. Horwood, T.J. Martin, M.T. Gillespie, Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 140, 4451–4458 (1999)

    Article  PubMed  CAS  Google Scholar 

  80. J.M. Brown, E. Corey, Z.D. Lee, L.D. True, T.J. Yun, M. Tondravi, R.L. Vessella, Osteoprotegerin and rank ligand expression in prostate cancer. Urology 57, 611–616 (2001)

    Article  PubMed  CAS  Google Scholar 

  81. O. Sezer, U. Heider, I. Zavrski, C.A. Kühne, L.C. Hofbauer, RANK ligand and osteoprotegerin in myeloma bone disease. Blood 101, 2094–2098 (2003)

    Article  PubMed  CAS  Google Scholar 

  82. S. Yaccoby, M.J. Wezeman, A. Henderson, M. Cottler-Fox, Q. Yi, B. Barlogie, J. Epstein, Cancer and the microenvironment: myeloma–osteoclast interactions as a model. Cancer Res. 64, 2016–2023 (2004)

    Article  PubMed  CAS  Google Scholar 

  83. N. Giuliani, R. Bataille, C. Mancini, M. Lazzaretti, S. Barillé, Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98, 3527–3533 (2001)

    Article  PubMed  CAS  Google Scholar 

  84. R.N. Pearse, E.M. Sordillo, S. Yaccoby, B.R. Wong, D.F. Liau, N. Colman, J. Michaeli, J. Epstein, Y. Choi, Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc. Natl Acad. Sci. USA 98, 11581–11586 (2001)

    Article  PubMed  CAS  Google Scholar 

  85. T. Okada, S. Akikusa, H. Okuno, M. Kodaka, Bone marrow metastatic myeloma cells promote osteoclastogenesis through RANKL on endothelial cells. Clin. Exp. Metastasis 20, 639–646 (2003)

    Article  PubMed  CAS  Google Scholar 

  86. C.M. Shipman, P.I. Croucher, Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res. 63, 912–916 (2003)

    PubMed  CAS  Google Scholar 

  87. J.R. Canon, M. Roudier, R. Bryant, S. Morony, M. Stolina, P.J. Kostenuik, W.C. Dougall, Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin. Exp. Metastasis 25, 119–129 (2008)

    Article  PubMed  CAS  Google Scholar 

  88. S. Mikami, K. Katsube, M. Oya, M. Ishida, T. Kosaka, R. Mizuno, S. Mochizuki, T. Ikeda, M. Mukai, Y. Okada, Increased RANKL expression is related to tumour migration and metastasis of renal cell carcinomas. J. Pathol. 218(4), 530–539 (2009)

    Article  PubMed  CAS  Google Scholar 

  89. D.H. Jones, T. Nakashima, O.H. Sanchez, I. Kozieradzki, S.V. Komarova, I. Sarosi, S. Morony, E. Rubin, R. Sarao, C.V. Hojilla, V. Komnenovic, Y.-Y. Kong, M. Schreiber, S.J. Dixon, S.M. Sims, R. Khokha, T. Wada, J.M. Penninger, Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440, 692–696 (2006)

    Article  PubMed  CAS  Google Scholar 

  90. H. Yonou, N. Kanomata, M. Goya, T. Kamijo, T. Yokose, T. Hasebe, K. Nagai, T. Hatano, Y. Ogawa, A. Ochiai, Osteoprotegerin/osteoclastogenesis inhibitory factor decreases human prostate cancer burden in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice. Cancer Res. 63, 2096–2102 (2003)

    PubMed  CAS  Google Scholar 

  91. R.E. Miller, M. Roudier, J. Jones, A. Armstrong, J. Canon, W.C. Dougall, RANK ligand inhibition plus docetaxel improves survival and reduces tumor burden in a murine model of prostate cancer bone metastasis. Mol. Cancer Ther. 7, 2160–2169 (2008)

    Article  PubMed  CAS  Google Scholar 

  92. J. Zhang, J. Dai, Y. Qi, D.L. Lin, P. Smith, C. Strayhorn, A. Mizokami, Z. Fu, J. Westman, E.T. Keller, Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J. Clin. Invest. 107, 1235–1244 (2001)

    Article  PubMed  CAS  Google Scholar 

  93. S. Morony, K. Warmington, S. Adamu, F. Asuncion, Z. Geng, M. Grisanti, H.L. Tan, C. Capparelli, C. Starnes, B. Weimann, C.R. Dunstan, P.J. Kostenuik, The inhibition of RANKL causes greater suppression of bone resorption and hypercalcemia compared with bisphosphonates in two models of humoral hypercalcemia of malignancy. Endocrinology 146, 3235–3243 (2005)

    Article  PubMed  CAS  Google Scholar 

  94. G.K. Ellis, H.G. Bone, R. Chlebowski, D. Paul, S. Spadafora, J. Smith, M. Fan, S. Jun, Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J. Clin. Oncol. 26, 4875–4882 (2008)

    Article  PubMed  CAS  Google Scholar 

  95. M.R. Smith, B. Egerdie, N. Hernández Toriz, R. Feldman, T.L.J. Tammela, F. Saad, J. Heracek, M. Szwedowski, C. Ke, A. Kupic, B.Z. Leder, C. Goessl, Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N. Engl. J. Med. 361, 745–755 (2009)

    Article  PubMed  CAS  Google Scholar 

  96. K. Fizazi, M. Carducci, M. Smith, R. Damião, J. Brown, L. Karsh, P. Milecki, N. Shore, M. Rader, H. Wang, Q. Jiang, S. Tadros, R. Dansey, C. Goessl, Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377, 813–822 (2011)

    Article  PubMed  CAS  Google Scholar 

  97. M.R. Smith, F. Saad, R. Coleman, N. Shore, K. Fizazi, B. Tombal, K. Miller, P. Sieber, L. Karsh, R. Damião, T.L. Tammela, B. Egerdie, H. Van Poppel, J. Chin, J. Morote, F. Gómez-Veiga, T. Borkowski, Z. Ye, A. Kupic, R. Dansey, C. Goessl, Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 379, 39–46 (2011)

    Article  PubMed  CAS  Google Scholar 

  98. A.T. Stopeck, A. Lipton, J.-J. Body, G.G. Steger, K. Tonkin, R.H. de Boer, M. Lichinitser, Y. Fujiwara, D.A. Yardley, M. Viniegra, M. Fan, Q. Jiang, R. Dansey, S. Jun, A. Braun, Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J. Clin. Oncol. 28, 5132–5139 (2010)

    Article  PubMed  CAS  Google Scholar 

  99. D.H. Henry, L. Costa, F. Goldwasser, V. Hirsh, V. Hungria, J. Prausova, G.V. Scagliotti, H. Sleeboom, A. Spencer, S. Vadhan-Raj, R. von Moos, W. Willenbacher, P.J. Woll, J. Wang, Q. Jiang, S. Jun, R. Dansey, H. Yeh, Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J. Clin. Oncol. 29, 1125–1132 (2011)

    Article  PubMed  CAS  Google Scholar 

  100. D.P. Kiel, L.I. Kauppila, L.A. Cupples, M.T. Hannan, C.J. O’Donnell, P.W. Wilson, Bone loss and the progression of abdominal aortic calcification over a 25 year period: The Framingham Heart Study, New York. Calcif. Tissue Int. 74(2), 208 (2001)

    Google Scholar 

  101. M. Baud’huin, F. Lamoureux, L. Duplomb, F. Rédini, D. Heymann, RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases. Cell. Mol. Life Sci. 64, 2334–2350 (2007)

    Article  PubMed  CAS  Google Scholar 

  102. N. Bucay, I. Sarosi, C.R. Dunstan, S. Morony, J. Tarpley, C. Capparelli, S. Scully, H.L. Tan, W. Xu, D.L. Lacey, W.J. Boyle, W.S. Simonet, Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12, 1260–1268 (1998)

    Article  PubMed  CAS  Google Scholar 

  103. H. Min, S. Morony, I. Sarosi, C.R. Dunstan, C. Capparelli, S. Scully, G. Van, S. Kaufman, P.J. Kostenuik, D.L. Lacey, W.J. Boyle, W.S. Simonet, Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J. Exp. Med. 192, 463–474 (2000)

    Article  PubMed  CAS  Google Scholar 

  104. S. Morony, Y. Tintut, Z. Zhang, R.C. Cattley, G. Van, D. Dwyer, M. Stolina, P.J. Kostenuik, L.L. Demer, Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in ldlr(−/−) mice. Circulation 117, 411–420 (2008)

    Article  PubMed  CAS  Google Scholar 

  105. M.K. Osako, H. Nakagami, N. Koibuchi, H. Shimizu, F. Nakagami, H. Koriyama, M. Shimamura, T. Miyake, H. Rakugi, R. Morishita, Estrogen inhibits vascular calcification via vascular RANKL system: common mechanism of osteoporosis and vascular calcification. Circ. Res. 107, 466–475 (2010)

    Article  PubMed  CAS  Google Scholar 

  106. S. Helas, C. Goettsch, M. Schoppet, U. Zeitz, U. Hempel, H. Morawietz, P.J. Kostenuik, R.G. Erben, L.C. Hofbauer, Inhibition of receptor activator of NF-kappaB ligand by denosumab attenuates vascular calcium deposition in mice. Am. J. Pathol. 175, 473–478 (2009)

    Article  PubMed  CAS  Google Scholar 

  107. G.G. Teng, N.M. Patkar, K.G. Saag, Denosumab in postmenopausal women with low bone mineral density. Curr. Rheumatol. Rep. 9(1), 48–49 (2007)

    Article  PubMed  Google Scholar 

  108. A. Lipton, G.G. Steger, J. Figueroa, C. Alvarado, P. Solal-Celigny, J.-J. Body, R. de Boer, R. Berardi, P. Gascon, K.S. Tonkin, R. Coleman, A.H.G. Paterson, M.C. Peterson, M. Fan, A. Kinsey, S. Jun, Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J. Clin. Oncol. 25, 4431–4437 (2007)

    Article  PubMed  CAS  Google Scholar 

  109. M.J. Green, A.A. Deodhar, Bone changes in early rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 15, 105–123 (2001)

    Article  PubMed  CAS  Google Scholar 

  110. G. Kaya, E. Koçak, E. Akbal, A. Taş, S. Köklü, Comparison of the possible risk factors of bone mineral density in subjects with ulcerative colitis and healthy subjects. South. Med. J. 104, 747–751 (2011)

    Article  PubMed  Google Scholar 

  111. L. Graat-Verboom, F.W. Smeenk, B.E. van den Borne, M.A. Spruit, F.H. Jansen, J.W. van Enschot, E.F. Wouters, Progression of osteoporosis in patients with COPD: a 3-year follow up study. Respir. Med. 106(6), 861–870 (2012)

    Article  PubMed  Google Scholar 

  112. D. Carmona-Fernandes, M.J. Santos, I.P. Perpétuo, J.E. Fonseca, H. Canhão, Soluble receptor activator of nuclear factor κB ligand/osteoprotegerin ratio is increased in systemic lupus erythematosus patients. Arthritis Res. Ther. 13, R175 (2011)

    Article  PubMed  CAS  Google Scholar 

  113. H. Takayanagi, H. Iizuka, T. Juji, T. Nakagawa, A. Yamamoto, T. Miyazaki, Y. Koshihara, H. Oda, K. Nakamura, S. Tanaka, Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum. 43, 259–269 (2000)

    Article  PubMed  CAS  Google Scholar 

  114. Y. Li, G. Toraldo, A. Li, X. Yang, H. Zhang, W.-P. Qian, M.N. Weitzmann, B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109, 3839–3848 (2007)

    Article  PubMed  CAS  Google Scholar 

  115. S. Cenci, G. Toraldo, M.N. Weitzmann, C. Roggia, Y. Gao, W.P. Qian, O. Sierra, R. Pacifici, Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class II transactivator. Proc. Natl Acad. Sci. USA 100, 10405–10410 (2003)

    Article  PubMed  CAS  Google Scholar 

  116. D.M. Anderson, E. Maraskovsky, W.L. Billingsley, W.C. Dougall, M.E. Tometsko, E.R. Roux, M.C. Teepe, R.F. DuBose, D. Cosman, L. Galibert, A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179 (1997)

    Article  PubMed  CAS  Google Scholar 

  117. P. Bai, Y. Sun, J. Jin, J. Hou, R. Li, Q. Zhang, Y. Wang, Disturbance of the OPG/RANK/RANKL pathway and systemic inflammation in COPD patients with emphysema and osteoporosis. Respir. Res. 12, 157 (2011)

    Article  PubMed  CAS  Google Scholar 

  118. R.L. Van Bezooijen, H.C. Farih-Sips, S.E. Papapoulos, C.W. Löwik, Interleukin-17: a new bone acting cytokine in vitro. J. Bone Miner. Res. 14, 1513–1521 (1999)

    Article  Google Scholar 

  119. E. Lubberts, L. van den Bersselaar, B. Oppers-Walgreen, P. Schwarzenberger, C.J. Coenen-de Roo, J.K. Kolls, L.A. Joosten, W.B. van den Berg, IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance. J. Immunol. 170(5), 2655–2662 (2003)

    PubMed  CAS  Google Scholar 

  120. G. Schett, K. Redlich, S. Hayer, J. Zwerina, B. Bolon, C. Dunstan, B. Görtz, A. Schulz, H. Bergmeister, G. Kollias, G. Steiner, J.S. Smolen, Osteoprotegerin protects against generalized bone loss in tumor necrosis factor-transgenic mice. Arthritis Rheum. 48, 2042–2051 (2003)

    Article  PubMed  CAS  Google Scholar 

  121. A.R. Pettit, H. Ji, D. von Stechow, R. Müller, S.R. Goldring, Y. Choi, C. Benoist, E.M. Gravallese, TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am. J. Pathol. 159, 1689–1699 (2001)

    Article  PubMed  CAS  Google Scholar 

  122. A.J. Ashcroft, S.M. Cruickshank, P.I. Croucher, M.J. Perry, S. Rollinson, J.M. Lippitt, J.A. Child, C. Dunstan, P.J. Felsburg, G.J. Morgan, S.R. Carding, Colonic dendritic cells, intestinal inflammation, and T cell-mediated bone destruction are modulated by recombinant osteoprotegerin. Immunity 19, 849–861 (2003)

    Article  PubMed  CAS  Google Scholar 

  123. S.B. Cohen, R.K. Dore, N.E. Lane, P.A. Ory, C.G. Peterfy, J.T. Sharp, D. van der Heijde, L. Zhou, W. Tsuji, R. Newmark, Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 58, 1299–1309 (2008)

    Article  PubMed  CAS  Google Scholar 

  124. J.T. Sharp, W. Tsuji, P. Ory, C. Harper-Barek, H. Wang, R. Newmark, Denosumab prevents metacarpal shaft cortical bone loss in patients with erosive rheumatoid arthritis. Arthritis Care Res. 62, 537–544 (2010)

    Article  Google Scholar 

  125. A. Deodhar, R.K. Dore, D. Mandel, J. Schechtman, W. Shergy, R. Trapp, P.A. Ory, C.G. Peterfy, T. Fuerst, H. Wang, L. Zhou, W. Tsuji, R. Newmark, Denosumab-mediated increase in hand bone mineral density associated with decreased progression of bone erosion in rheumatoid arthritis patients. Arthritis Care Res. 62, 569–574 (2010)

    Article  CAS  Google Scholar 

  126. D. Kim, R.E. Mebius, J.D. MacMicking, S. Jung, T. Cupedo, Y. Castellanos, J. Rho, B.R. Wong, R. Josien, N. Kim, P.D. Rennert, Y. Choi, Regulation of peripheral lymph node genesis by the tumor necrosis factor family member trance. J. Exp. Med. 192, 1467–1478 (2000)

    Article  PubMed  CAS  Google Scholar 

  127. Y. Hikosaka, T. Nitta, I. Ohigashi, K. Yano, N. Ishimaru, Y. Hayashi, M. Matsumoto, K. Matsuo, J.M. Penninger, H. Takayanagi, Y. Yokota, H. Yamada, Y. Yoshikai, J.-I. Inoue, T. Akiyama, Y. Takahama, The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29, 438–450 (2008)

    Article  PubMed  CAS  Google Scholar 

  128. M.M. Guerrini, C. Sobacchi, B. Cassani, M. Abinun, S.S. Kilic, A. Pangrazio, D. Moratto, E. Mazzolari, J. Clayton-Smith, P. Orchard, F.P. Coxon, M.H. Helfrich, J.C. Crockett, D. Mellis, A. Vellodi, I. Tezcan, L.D. Notarangelo, M.J. Rogers, P. Vezzoni, A. Villa, A. Frattini, Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am. J. Hum. Genet. 83, 64–76 (2008)

    Article  PubMed  CAS  Google Scholar 

  129. C. Sobacchi, A. Frattini, M.M. Guerrini, M. Abinun, A. Pangrazio, L. Susani, R. Bredius, G. Mancini, A. Cant, N. Bishop, P. Grabowski, A. Del Fattore, C. Messina, G. Errigo, F.P. Coxon, D.I. Scott, A. Teti, M.J. Rogers, P. Vezzoni, A. Villa, M.H. Helfrich, Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat. Genet. 39, 960–962 (2007)

    Article  PubMed  CAS  Google Scholar 

  130. J.C. Crockett, D.J. Mellis, D.I. Scott, M.H. Helfrich, New knowledge on critical osteoclast formation and activation pathways from study of rare genetic diseases of osteoclasts: focus on the RANK/RANKL axis. Osteoporos. Int. 22, 1–20 (2011)

    Article  PubMed  CAS  Google Scholar 

  131. N. Nakagawa, M. Kinosaki, K. Yamaguchi, N. Shima, H. Yasuda, K. Yano, T. Morinaga, K. Higashio, RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem. Biophys. Res. Commun. 253, 395–400 (1998)

    Article  PubMed  CAS  Google Scholar 

  132. V. Kartsogiannis, H. Zhou, N.J. Horwood, R.J. Thomas, D.K. Hards, J.M. Quinn, P. Niforas, K.W. Ng, T.J. Martin, M.T. Gillespie, Localization of RANKL (receptor activator of NF kappa B ligand) mRNA and protein in skeletal and extraskeletal tissues. Bone 25, 525–534 (1999)

    Article  PubMed  CAS  Google Scholar 

  133. R. Hanada, A. Leibbrandt, T. Hanada, S. Kitaoka, T. Furuyashiki, H. Fujihara, J. Trichereau, M. Paolino, F. Qadri, R. Plehm, S. Klaere, V. Komnenovic, H. Mimata, H. Yoshimatsu, N. Takahashi, A. von Haeseler, M. Bader, S.S. Kilic, Y. Ueta, C. Pifl, S. Narumiya, J.M. Penninger, Central control of fever and female body temperature by RANKL/RANK. Nature 462, 505–509 (2009)

    Article  PubMed  CAS  Google Scholar 

  134. K. Loser, A. Mehling, S. Loeser, J. Apelt, A. Kuhn, S. Grabbe, T. Schwarz, J.M. Penninger, S. Beissert, Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat. Med. 12, 1372–1379 (2006)

    Article  PubMed  CAS  Google Scholar 

  135. N.B. Watts, C. Roux, J.F. Modlin, J.P. Brown, A. Daniels, S. Jackson, S. Smith, D.J. Zack, L. Zhou, A. Grauer, S. Ferrari, Infections in postmenopausal women with osteoporosis treated with denosumab or placebo: coincidence or causal association? Osteoporos. Int. 23(1), 327–337 (2012)

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

LCH has received honoraria from Amgen, Merck, Novartis, and Nycomed. KS, ET, MR, TDR and CH have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz C. Hofbauer.

Additional information

Kathrin Sinningen and Elena Tsourdi contributed equally for this review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinningen, K., Tsourdi, E., Rauner, M. et al. Skeletal and extraskeletal actions of denosumab. Endocrine 42, 52–62 (2012). https://doi.org/10.1007/s12020-012-9696-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9696-x

Keywords

Navigation