Skip to main content

Advertisement

Log in

New knowledge on critical osteoclast formation and activation pathways from study of rare genetic diseases of osteoclasts: focus on the RANK/RANKL axis

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Functional, biochemical and genetic studies have over the past decade identified many causative genes in the osteoclast diseases osteopetrosis and Paget's disease of bone. Here, we outline all osteoclast diseases and their genetic associations and then focus specifically on those diseases caused by mutations in the critical osteoclast molecule Receptor Activator of Nuclear factor Kappa B (RANK). Both loss and gain-of-function mutations have been found in humans leading to osteopetrosis and high bone turnover phenotypes, respectively. Osteopetrosis-associated RANK mutations are widely distributed over the RANK molecule. It is likely that some negatively affect ligand binding, whereas others preclude appropriate association of RANK with downstream signalling molecules. In the Paget-like disorders, familial expansile osteolysis, early onset Paget's disease and expansile skeletal hyperphosphatasia, heterozygous insertion mutations are found in the RANK signal peptide. These prevent signal peptide cleavage, trapping the protein translated from the mutated allele in the endoplasmic reticulum. Whole animal studies replicate the hyperactive osteoclast phenotype associated with these disorders and present only with heterozygous expression of the mutation, suggesting an as yet unexplained effect of the mutant allele on normal RANK function. We discuss the cell biological studies and animal models that help us to understand the nature of these different RANK defects and describe how careful dissection of these conditions can help understand critical pathways in osteoclast development and function. We highlight areas that require further study, particularly in light of the pharmacological interest in targeting the RANK signalling pathway to treat diseases caused by excessive bone resorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Teitelbaum SL (2007) Osteoclasts: what do they do and how do they do it? Am J Pathol 170:427–435

    CAS  PubMed  Google Scholar 

  2. Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson DM, Suda T (1999) Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med 190:1741–1754

    CAS  PubMed  Google Scholar 

  3. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira dSA, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–23

    CAS  PubMed  Google Scholar 

  4. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    CAS  PubMed  Google Scholar 

  5. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    CAS  PubMed  Google Scholar 

  6. Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97:1566–1571

    CAS  PubMed  Google Scholar 

  7. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    CAS  PubMed  Google Scholar 

  8. Leibbrandt A, Penninger JM (2008) RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci 1143:123–150

    CAS  PubMed  Google Scholar 

  9. Hanada R, Leibbrandt A, Hanada T, Kitaoka S, Furuyashiki T, Fujihara H, Trichereau J, Paolino M, Qadri F, Plehm R, Klaere S, Komnenovic V, Mimata H, Yoshimatsu H, Takahashi N, von HA, Bader M, Kilic SS, Ueta Y, Pifl C, Narumiya S, Penninger JM (2009) Central control of fever and female body temperature by RANKL/RANK. Nature 462:505–9

    CAS  PubMed  Google Scholar 

  10. Salo J, Lehenkari P, Mulari M, Metsikko K, Väänänen HK (1997) Removal of osteoclast bone resorption products by transcytosis. Science 276:270–273

    CAS  PubMed  Google Scholar 

  11. Nesbitt SA, Horton MA (1997) Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276:266–269

    CAS  PubMed  Google Scholar 

  12. Graves AR, Curran PK, Smith CL, Mindell JA (2008) The Cl-/H+antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453:788–792

    CAS  PubMed  Google Scholar 

  13. Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215

    CAS  PubMed  Google Scholar 

  14. Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–1238

    CAS  PubMed  Google Scholar 

  15. Balemans W, Patel N, Ebeling M, Van HE, Wuyts W, Lacza C, Dioszegi M, Dikkers FG, Hildering P, Willems PJ, Verheij JB, Lindpaintner K, Vickery B, Foernzler D, Van HW (2002) Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet 39:91–97

    CAS  PubMed  Google Scholar 

  16. Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Bénichou O, Scopelliti D, Key L, Renton T, Bartels C, Gong Y, Warman ML, de Vernejoul MC, Bollerslev J, Van HW (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72:763–771

    PubMed  Google Scholar 

  17. Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den EJ, Willems P, Paes-Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpaintner K, Vickery B, Foernzler D, Van Hul W (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10:537–543

    CAS  PubMed  Google Scholar 

  18. Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C (2009) Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcif Tissue Int 84:1–12

    CAS  PubMed  Google Scholar 

  19. Albers-Schönberg HE (1904) Röntgenbilder einer seltener Knochenerkrankung. Münch Med Wochenschr 51:368

    Google Scholar 

  20. Marks SCJ, Walker DG (1976) Mammalian osteopetrosis. A model for studying cellular and humoral factors in bone resorption. 227-301

  21. Marks SC Jr (1984) Congenital osteopetrotic mutations as probes of the origin, structure, and function of osteoclasts. Clin Orthop:239-263

  22. Marks SC Jr (1989) Osteoclast biology: lessons from mammalian mutations. Am J Med Genet 34:43–54

    PubMed  Google Scholar 

  23. Walker DG (1975) Spleen cells transmit osteopetrosis in mice. Science 190:785–787

    CAS  PubMed  Google Scholar 

  24. Walker DG (1975) Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science 190:784–785

    CAS  PubMed  Google Scholar 

  25. Walker DG (1973) Osteopetrosis cured by temporary parabiosis. Science 180:875

    CAS  PubMed  Google Scholar 

  26. Cumming WA, Ohlsson A (1985) Intracranial calcification in children with osteopetrosis caused by carbonic anhydrase II deficiency. Radiology 157:325–327

    CAS  PubMed  Google Scholar 

  27. Bénichou OD, Laredo JD, de Vernejoul MC (2000) Type II autosomal dominant osteopetrosis (Albers-Schönberg disease): clinical and radiological manifestations in 42 patients. Bone 26:87–93

    PubMed  Google Scholar 

  28. Del Fattore A, Peruzzi B, Rucci N, Recchia I, Cappariello A, Longo M, Fortunati D, Ballanti P, Iacobini M, Luciani M, Devito R, Pinto R, Caniglia M, Lanino E, Messina C, Cesaro S, Letizia C, Bianchini G, Fryssira H, Grabowski P, Shaw N, Bishop N, Hughes D, Kapur RP, Datta HK, Taranta A, Fornari R, Migliaccio S, Teti A (2006) Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment. J Med Genet 43:315–325

    PubMed  Google Scholar 

  29. Helfrich M, Perdu B, Coxon F (2009) Human recessive osteopetrosis. New understanding of osteoclast function through molecular and functional analysis of a rare genetic bone disease. Osteologie 18:260–267

    Google Scholar 

  30. Pangrazio A, Pusch M, Caldana E, Frattini A, Lanino E, Tamhankar PM, Phadke S, Lopez AG, Orchard P, Mihci E, Abinun M, Wright M, Vettenranta K, Bariae I, Melis D, Tezcan I, Baumann C, Locatelli F, Zecca M, Horwitz E, Mansour LS, Van RM, Vezzoni P, Villa A, Sobacchi C (2010) Molecular and clinical heterogeneity in CLCN7-dependent osteopetrosis: report of 20 novel mutations. Hum Mutat 31:E1071–E1080

    PubMed  Google Scholar 

  31. Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, Moratto D, Mazzolari E, Clayton-Smith J, Orchard P, Coxon FP, Helfrich MH, Crockett JC, Mellis D, Vellodi A, Tezcan I, Notarangelo LD, Rogers MJ, Vezzoni P, Villa A, Frattini A (2008) Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet 83:64–76

    CAS  PubMed  Google Scholar 

  32. Steward CG (2010) Hematopoietic Stem Cell Transplantation for Osteopetrosis. Pediatr Clin N Am 57:171–180

    Google Scholar 

  33. Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L, Bredius R, Mancini G, Cant A, Bishop N, Grabowski P, Del FA, Messina C, Errigo G, Coxon FP, Scott DI, Teti A, Rogers MJ, Vezzoni P, Villa A, Helfrich MH (2007) Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet 39:960–962

    CAS  PubMed  Google Scholar 

  34. Knowles HJ, Athanasou NA (2009) Canonical and non-canonical pathways of osteoclast formation. Histol Histopathol 24:337–346

    CAS  PubMed  Google Scholar 

  35. Tiegs RD, Lohse CM, Wollan PC, Melton LJ (2000) Long-term trends in the incidence of Paget's disease of bone. Bone 27:423–427

    CAS  PubMed  Google Scholar 

  36. Bastin S, Bird H, Gamble G, Cundy T (2009) Paget's disease of bone–becoming a rarity? Rheumatology (Oxford) 48:1232–1235

    Google Scholar 

  37. Selby P, Davie M, Ralston S, Stone M (2002) Guidelines on the management of Paget's disease of bone. Bone 31:366–373

    CAS  PubMed  Google Scholar 

  38. Ralston SH, Langston AL, Reid IR (2008) Pathogenesis and management of Paget's disease of bone. Lancet 372:155–163

    CAS  PubMed  Google Scholar 

  39. Naot D, Bava U, Matthews B, Callon KE, Gamble GD, Black M, Song S, Pitto RP, Cundy T, Cornish J, Reid IR (2007) Differential gene expression in cultured osteoblasts and bone marrow stromal cells from patients with Paget's disease of bone. J Bone Miner Res 22:298–309

    CAS  PubMed  Google Scholar 

  40. Helfrich MH, Hocking LJ (2008) Genetics and aetiology of Pagetic diseases of bone. Arch Biochem Biophys 473:172–182

    CAS  PubMed  Google Scholar 

  41. Helfrich MH, Hobson RP, Grabowski PS, Zurbriggen A, Cosby SL, Dickson GR, Fraser WD, Ooi CG, Selby PL, Crisp AJ, Wallace RG, Kahn S, Ralston SH (2000) A negative search for a paramyxoviral etiology of Paget's disease of bone: molecular, immunological, and ultrastructural studies in UK patients. J Bone Miner Res 15:2315–2329

    CAS  PubMed  Google Scholar 

  42. Cavey JR, Ralston SH, Hocking LJ, Sheppard PW, Ciani B, Searle MS, Layfield R (2005) Loss of ubiquitin-binding associated with Paget's disease of bone p62 (SQSTM1) mutations. J Bone Miner Res 20:619–624

    CAS  PubMed  Google Scholar 

  43. Layfield R, Shaw B (2007) Ubiquitin-mediated signalling and Paget's disease of bone. BMC Biochem 8(Suppl 1):S5

    PubMed  Google Scholar 

  44. Whyte MP, Obrecht SE, Finnegan PM, Jones JL, Podgornik MN, McAlister WH, Mumm S (2002) Osteoprotegerin deficiency and juvenile Paget's disease. N Engl J Med 347:175–184

    CAS  PubMed  Google Scholar 

  45. Cundy T, Hegde M, Naot D, Chong B, King A, Wallace R, Mulley J, Love DR, Seidel J, Fawkner M, Banovic T, Callon KE, Grey AB, Reid IR, Middleton-Hardie CA, Cornish J (2002) A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum Mol Genet 11:2119–2127

    CAS  PubMed  Google Scholar 

  46. Ralston SH (2008) Juvenile Paget's disease, familial expansile osteolysis and other genetic osteolytic disorders. Best Pract Res Clin Rheumatol 22:101–111

    CAS  PubMed  Google Scholar 

  47. Takata S, Yasui N, Nakatsuka K, Ralston SH (2004) Evolution of understanding of genetics of Paget's disease of bone and related diseases. J Bone Miner Metab 22:519–523

    PubMed  Google Scholar 

  48. Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, Van Hul W, Whyte MP, Nakatsuka K, Hovy L, Anderson DM (2000) Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 24:45–48

    CAS  PubMed  Google Scholar 

  49. Whyte MP, Hughes AE (2002) Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J Bone Miner Res 17:26–29

    CAS  PubMed  Google Scholar 

  50. Nakatsuka K, Nishizawa Y, Ralston SH (2003) Phenotypic characterization of early onset Paget's disease of bone caused by a 27-bp duplication in the TNFRSF11A gene. J Bone Miner Res 18:1381–1385

    CAS  PubMed  Google Scholar 

  51. Ke YH, Yue H, He JW, Liu YJ, Zhang ZL (2009) Early onset Paget's disease of bone caused by a novel mutation (78dup27) of the TNFRSF11A gene in a Chinese family. Acta Pharmacol Sin 30:1204–1210

    CAS  PubMed  Google Scholar 

  52. Albagha OME, Rojas J, van 't Hof R, Dorin J, Ralston SH (2007) A mouse model of early onset Paget's disease of bone caused by an insertion mutation affecting the RANK signal peptide. Calcif Tissue Int 80(suppl 1):s34

    Google Scholar 

  53. Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3:1285–1289

    CAS  PubMed  Google Scholar 

  54. Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Morony S, Capparelli C, Van G, Kaufman S, der HA van, Itie A, Wakeham A, Khoo W, Sasaki T, Cao Z, Penninger JM, Paige CJ, Lacey DL, Dunstan CR, Boyle WJ, Goeddel DV, Mak TW (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13:1015–24

    CAS  PubMed  Google Scholar 

  55. Duran A, Serrano M, Leitges M, Flores JM, Picard S, Brown JP, Moscat J, Diaz-Meco MT (2004) The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell 6:303–309

    CAS  PubMed  Google Scholar 

  56. Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, Nakao K, Nakamura K, Katsuki M, Yamamoto T, Inoue J (1999) Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4:353–362

    CAS  PubMed  Google Scholar 

  57. Hocking LJ, Lucas GJ, Daroszewska A, Mangion J, Olavesen M, Cundy T, Nicholson GC, Ward L, Bennett ST, Wuyts W, Van Hul W, Ralston SH (2002) Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget's disease. Hum Mol Genet 11:2735–2739

    CAS  PubMed  Google Scholar 

  58. Doffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, Bodemer C, Kenwrick S, Dupuis-Girod S, Blanche S, Wood P, Rabia SH, Headon DJ, Overbeek PA, Le DF, Holland SM, Belani K, Kumararatne DS, Fischer A, Shapiro R, Conley ME, Reimund E, Kalhoff H, Abinun M, Munnich A, Israel A, Courtois G, Casanova JL (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 27:277–285

    CAS  PubMed  Google Scholar 

  59. Lum L, Wong BR, Josien R, Becherer JD, Erdjument-Bromage H, Schlondorff J, Tempst P, Choi Y, Blobel CP (1999) Evidence for a role of a tumor necrosis factor-alpha (TNF-alpha)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. J Biol Chem 274:13613–13618

    CAS  PubMed  Google Scholar 

  60. Nannuru KC, Futakuchi M, Sadanandam A, Wilson TJ, Varney ML, Myers KJ, Li X, Marcusson EG, Singh RK (2009) Enhanced expression and shedding of receptor activator of NF-kappaB ligand during tumor-bone interaction potentiates mammary tumor-induced osteolysis. Clin Exp Metastasis 26:797–808

    CAS  PubMed  Google Scholar 

  61. Lynch CC, Hikosaka A, Acuff HB, Martin MD, Kawai N, Singh RK, Vargo-Gogola TC, Begtrup JL, Peterson TE, Fingleton B, Shirai T, Matrisian LM, Futakuchi M (2005) MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 7:485–496

    CAS  PubMed  Google Scholar 

  62. Lam J, Nelson CA, Ross FP, Teitelbaum SL, Fremont DH (2001) Crystal structure of the TRANCE/RANKL cytokine reveals determinants of receptor-ligand specificity. J Clin Invest 108:971–979

    CAS  PubMed  Google Scholar 

  63. Chan FK (2007) Three is better than one: pre-ligand receptor assembly in the regulation of TNF receptor signaling. Cytokine 37:101–107

    CAS  PubMed  Google Scholar 

  64. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424

    CAS  PubMed  Google Scholar 

  65. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    CAS  PubMed  Google Scholar 

  66. Bossen C, Ingold K, Tardivel A, Bodmer JL, Gaide O, Hertig S, Ambrose C, Tschopp J, Schneider P (2006) Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. J Biol Chem 281:13964–13971

    CAS  PubMed  Google Scholar 

  67. Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ (2000) A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288:2351–2354

    CAS  PubMed  Google Scholar 

  68. Kanazawa K, Kudo A (2005) Self-assembled RANK induces osteoclastogenesis ligand-independently. J Bone Miner Res 20:2053–2060

    CAS  PubMed  Google Scholar 

  69. Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33:275–286

    CAS  PubMed  Google Scholar 

  70. Darnay BG, Ni J, Moore PA, Aggarwal BB (1999) Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem 274:7724–7731

    CAS  PubMed  Google Scholar 

  71. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362

    CAS  PubMed  Google Scholar 

  72. Lamothe B, Webster WK, Gopinathan A, Besse A, Campos AD, Darnay BG (2007) TRAF6 ubiquitin ligase is essential for RANKL signaling and osteoclast differentiation. Biochem Biophys Res Commun 359:1044–1049

    CAS  PubMed  Google Scholar 

  73. Mizukami J, Takaesu G, Akatsuka H, Sakurai H, Ninomiya-Tsuji J, Matsumoto K, Sakurai N (2002) Receptor activator of NF-kappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase complex through a signaling complex containing RANK, TAB2, and TRAF6. Mol Cell Biol 22:992–1000

    CAS  PubMed  Google Scholar 

  74. Besse A, Lamothe B, Campos AD, Webster WK, Maddineni U, Lin SC, Wu H, Darnay BG (2007) TAK1-dependent signaling requires functional interaction with TAB2/TAB3. J Biol Chem 282:3918–3928

    CAS  PubMed  Google Scholar 

  75. Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD (2006) Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. Nat Cell Biol 8:398–406

    CAS  PubMed  Google Scholar 

  76. Chen ZJ (2005) Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7:758–765

    CAS  PubMed  Google Scholar 

  77. Horne WC, Sanjay A, Bruzzaniti A, Baron R (2005) The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev 208:106–125

    CAS  PubMed  Google Scholar 

  78. Arron JR, Vologodskaia M, Wong BR, Naramura M, Kim N, Gu H, Choi Y (2001) A positive regulatory role for Cbl family proteins in tumor necrosis factor-related activation-induced cytokine (trance) and CD40L-mediated Akt activation. J Biol Chem 276:30011–30017

    CAS  PubMed  Google Scholar 

  79. Nakajima A, Sanjay A, Chiusaroli R, Adapala NS, Neff L, Itzsteink C, Horne WC, Baron R (2009) Loss of Cbl-b increases osteoclast bone-resorbing activity and induces osteopenia. J Bone Miner Res 24:1162–1172

    CAS  PubMed  Google Scholar 

  80. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385:729–733

    CAS  PubMed  Google Scholar 

  81. Hiasa M, Abe M, Nakano A, Oda A, Amou H, Kido S, Takeuchi K, Kagawa K, Yata K, Hashimoto T, Ozaki S, Asaoka K, Tanaka E, Moriyama K, Matsumoto T (2009) GM-CSF and IL-4 induce dendritic cell differentiation and disrupt osteoclastogenesis through M-CSF receptor shedding by up-regulation of TNF-alpha converting enzyme (TACE). Blood 114:4517–4526

    CAS  PubMed  Google Scholar 

  82. Hakozaki A, Yoda M, Tohmonda T, Furukawa M, Hikata T, Uchikawa S, Takaishi H, Matsumoto M, Chiba K, Horiuchi K, Toyama Y (2010) Receptor Activator of NF-{kappa}B Ligand Induces Ectodomain Shedding of Receptor Activator of NF-{kappa}B in Murine RAW264.7 Macrophages. J Immunol

  83. Xu D, Wang S, Liu W, Liu J, Feng X (2006) A novel receptor activator of NF-kappaB (RANK) cytoplasmic motif plays an essential role in osteoclastogenesis by committing macrophages to the osteoclast lineage. J Biol Chem 281:4678–4690

    CAS  PubMed  Google Scholar 

  84. Kuzmiak HA, Maquat LE (2006) Applying nonsense-mediated mRNA decay research to the clinic: progress and challenges. Trends Mol Med 12:306–316

    CAS  PubMed  Google Scholar 

  85. Crockett JC, Helfrich M, Duthie A, Scott D, Greenhorn J, Ralston S, Rogers MJ (2006) Mutations in the RANK signal peptide alter the subcellular localisation of RANK and prevent ligand-dependent activation of NFkappa B. J Bone Miner Res 21(suppl 1):S103

    Google Scholar 

  86. Snapp EL, Hegde RS, Francolini M, Lombardo F, Colombo S, Pedrazzini E, Borgese N, Lippincott-Schwartz J (2003) Formation of stacked ER cisternae by low affinity protein interactions. J Cell Biol 163:257–269

    CAS  PubMed  Google Scholar 

  87. Vembar SS, Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9:944–957

    CAS  PubMed  Google Scholar 

  88. Pahl HL (1999) Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol Rev 79:683–701

    CAS  PubMed  Google Scholar 

  89. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    CAS  PubMed  Google Scholar 

  90. Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, Pestronk A, Whyte MP, Kimonis VE (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381

    CAS  PubMed  Google Scholar 

  91. Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, Baloh RH, Weihl CC (2009) Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol 187:875–888

    CAS  PubMed  Google Scholar 

  92. Terman A, Gustafsson B, Brunk UT (2007) Autophagy, organelles and ageing. J Pathol 211:134–143

    CAS  PubMed  Google Scholar 

  93. Azzam EA, Scott DI, Gregory JS, McKinnon AD, Helfrich MH (2009) Expresssion of inclusion body-associated proteins in Paget's disease of bone. Bone 44(Suppl):S326–S327

    Google Scholar 

  94. Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4:e423

    PubMed  Google Scholar 

  95. Merchant A, Smielewska M, Patel N, Akunowicz JD, Saria EA, Delaney JD, Leach RJ, Seton M, Hansen MF (2009) Somatic mutations in SQSTM1 detected in affected tissues from patients with sporadic Paget's disease of bone. J Bone Miner Res 24:484–494

    CAS  PubMed  Google Scholar 

  96. Matthews BG, Naot D, Bava U, Callon KE, Pitto RP, McCowan SA, Wattie D, Cundy T, Cornish J, Reid IR (2009) Absence of somatic SQSTM1 mutations in Paget's disease of bone. J Clin Endocrinol Metab 94:691–694

    CAS  PubMed  Google Scholar 

  97. Roodman GD, Windle JJ (2005) Paget disease of bone. J Clin Invest 115:200–208

    CAS  PubMed  Google Scholar 

  98. Kurihara N, Zhou H, Reddy SV, Garcia PV, Subler MA, Dempster DW, Windle JJ, Roodman GD (2006) Expression of measles virus nucleocapsid protein in osteoclasts induces Paget's disease-like bone lesions in mice. J Bone Miner Res 21:446–455

    CAS  PubMed  Google Scholar 

  99. Matthews BG, Afzal MA, Minor PD, Bava U, Callon KE, Pitto RP, Cundy T, Cornish J, Reid IR, Naot D (2008) Failure to detect measles virus ribonucleic acid in bone cells from patients with Paget's disease. J Clin Endocrinol Metab 93:1398–1401

    CAS  PubMed  Google Scholar 

  100. Osterberg PH, Wallace RGH, Adams DA, Crone RS, Dickson GR, Kanis JA, Mollan RAB, Nevin NC, Sloan J, Toner PG (1988) Familial expansile osteolysis:a new dysplasia. J Bone Joint Surg 70-B:255–260

    Google Scholar 

  101. Whyte MP, Reinus WR, Podgornik MN, Mills BG (2002) Familial expansile osteolysis (excessive RANK effect) in a 5-generation American kindred. Medicine (Baltimore) 81:101–121

    Google Scholar 

  102. Daroszewska A, Rojas J, Rose L, van 't Hof RJ, Ralston SH (2008) Knock-in of the P392L mutation of SQSTM1 causes a phenotype similar to Paget's disease in mice. Calcif Tissue Int 82(suppl 1):S34–S35

    Google Scholar 

  103. Daroszewska A, Rose L, Rose K, Sedlmeier R, van 't Hof RJ, Ralston SH (2009) Development of a novel animal model for the syndrome of inclusions body myopathy, Paget's disease and fronto-temporal dementia. Bone 44(Suppl):S247

    Google Scholar 

  104. Richards JB, Kavvoura FK, Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Zillikens MC, Wilson SG, Mullin BH, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra BA, Pols HA, Sigurdsson G, Thorsteinsdottir U, Soranzo N, Williams FM, Zhou Y, Ralston SH, Thorleifsson G, van Duijn CM, Kiel DP, Stefansson K, Uitterlinden AG, Ioannidis JP, Spector TD (2009) Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med 151:528–537

    PubMed  Google Scholar 

  105. Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Richards JB, Zillikens MC, Kavvoura FK, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Grundberg E, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra B, Pastinen T, Pols HA, Sigurdsson G, Soranzo N, Thorleifsson G, Thorsteinsdottir U, Williams FM, Wilson SG, Zhou Y, Ralston SH, van Duijn CM, Spector T, Kiel DP, Stefansson K, Ioannidis JP, Uitterlinden AG (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41:1199–1206

    CAS  PubMed  Google Scholar 

  106. Scimeca JC, Franchi A, Trojani C, Parrinello H, Grosgeorge J, Robert C, Jaillon O, Poirier C, Gaudray P, Carle GF (2000) The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants. Bone 26:207–213

    CAS  PubMed  Google Scholar 

  107. Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, Notarangelo LD, Vezzoni P, Villa A (2000) Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25:343–346

    CAS  PubMed  Google Scholar 

  108. Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, Hasan C, Bode U, Jentsch TJ, Kubisch C (2000) Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 9:2059–2063

    CAS  PubMed  Google Scholar 

  109. Li YP, Chen W, Liang Y, Li E, Stashenko P (1999) Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 23:447–451

    CAS  PubMed  Google Scholar 

  110. Chalhoub N, Benachenhou N, Rajapurohitam V, Pata M, Ferron M, Frattini A, Villa A, Vacher J (2003) Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med 9:399–406

    CAS  PubMed  Google Scholar 

  111. Rajapurohitam V, Chalhoub N, Benachenhou N, Neff L, Baron R, Vacher J (2001) The mouse osteopetrotic grey-lethal mutation induces a defect in osteoclast maturation/function. Bone 28:513–523

    CAS  PubMed  Google Scholar 

  112. Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, MacKay CA, Van HE, Timmermans JP, Vanhoenacker F, Jacobs R, Peruzzi B, Teti A, Helfrich MH, Rogers MJ, Villa A, Van HW (2007) Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest 117:919–930

    PubMed  Google Scholar 

  113. Del Fattore A, Fornari R, Van WL, de FF T, JP PB, Cappariello A, Rucci N, Spera G, Helfrich MH, Van HW, Migliaccio S, Teti A (2008) A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts. J Bone Miner Res 23:380–391

    PubMed  Google Scholar 

  114. Reinholt FP, Hultenby K, Heinegård D, Marks SC Jr, Norgard M, Anderson G (1999) Extensive clear zone and defective ruffled border formation in osteoclasts of osteopetrotic (ia/ia) rats: implications for secretory function. Exp Cell Res 251:477–491

    CAS  PubMed  Google Scholar 

  115. Dupuis-Girod S, Corradini N, Hadj-Rabia S, Fournet JC, Faivre L, Le DF, Durand P, Doffinger R, Smahi A, Israel A, Courtois G, Brousse N, Blanche S, Munnich A, Fischer A, Casanova JL, Bodemer C (2002) Osteopetrosis, lymphedema, anhidrotic ectodermal dysplasia, and immunodeficiency in a boy and incontinentia pigmenti in his mother. Pediatrics 109:e97

    PubMed  Google Scholar 

  116. Rudolph D, Yeh WC, Wakeham A, Rudolph B, Nallainathan D, Potter J, Elia AJ, Mak TW (2000) Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes Dev 14:854–862

    CAS  PubMed  Google Scholar 

  117. Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA 80:2752–2756

    CAS  PubMed  Google Scholar 

  118. Margolis DS, Szivek JA, Lai LW, Lien YH (2008) Phenotypic characteristics of bone in carbonic anhydrase II-deficient mice. Calcif Tissue Int 82:66–76

    CAS  PubMed  Google Scholar 

  119. Weihl CC, Miller SE, Hanson PI, Pestronk A (2007) Transgenic expression of inclusion body myopathy associated mutant p97/VCP causes weakness and ubiquitinated protein inclusions in mice. Hum Mol Genet 16:919–928

    CAS  PubMed  Google Scholar 

  120. Laurin N, Brown JP, Morissette J, Raymond V (2002) Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet 70:1582–1588

    CAS  PubMed  Google Scholar 

  121. Kurihara N, Hiruma Y, Zhou H, Subler MA, Dempster DW, Singer FR, Reddy SV, Gruber HE, Windle JJ, Roodman GD (2007) Mutation of the sequestosome 1 (p62) gene increases osteoclastogenesis but does not induce Paget disease. J Clin Invest 117:133–142

    CAS  PubMed  Google Scholar 

  122. Langston AL, Campbell MK, Fraser WD, Maclennan GS, Selby PL, Ralston SH (2009) Randomised Trial of Intensive Bisphosphonate Treatment Versus Symptomatic Management in Paget's Disease of Bone. J Bone Miner Res

Download references

Acknowledgement

Work of the authors in this field has received support from the arthritis research campaign (now Arthritis Research UK) grants 17440, F0548 and 13630, the Paget Foundation, the Chief Scientist Office of the Scottish Executive (grant CZB/4/495) and the Cunningham Trust, St. Andrews, Scotland. We are grateful to Colin Steward and Fraser Coxon for helpful comments on this manuscript.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Crockett.

Additional information

While this review was going to press, a study was published by Albagha et al (Nature Genetics, published online May 2010) demonstrating the association of SNPs on chromosome 18q21, close to the TNFRSF11a locus, with late onset Paget’s Disease in patients without SQSTM1 mutations. This highlights RANK as an additional susceptibility gene for development of late-onset Paget’s disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crockett, J.C., Mellis, D.J., Scott, D.I. et al. New knowledge on critical osteoclast formation and activation pathways from study of rare genetic diseases of osteoclasts: focus on the RANK/RANKL axis. Osteoporos Int 22, 1–20 (2011). https://doi.org/10.1007/s00198-010-1272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1272-8

Keywords

Navigation