Skip to main content

Advertisement

Log in

Biological agents in management of osteoporosis

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Osteoporosis is a skeletal disease associated with an imbalance between formation and resorption, leading to net loss of bone mass, loss of bone microarchitecture, and development of fractures. Bone resorption is primarily due to an activation of osteoclastogenesis and an increase in receptor activator of nuclear factor kappa-B ligand (RANKL) expression, a cytokine involved in the final pathway of the osteoclast cycle.

Recent studies of genetic diseases led to the discovery of the wingless-type (Wnt) signaling pathway that plays a major role in bone formation. Further work showed that sclerostin produced by osteocytes and the Dickkopf (DKK1) protein secreted in bone were negative regulators of the Wnt signaling bone formation pathway that act directly by binding to the co-receptors LRP5 and LRP6 of WnT and thereby inhibiting the anabolic Wnt pathway. This understanding of the bone remodeling led to the discovery of new biological drugs that target these pathways and have been evaluated in clinical trials.

The current article discusses the role of these newer “biological” agents in management of osteoporosis. Denosumab, a human monoclonal antibody that specifically binds RANKL, blocks the binding of RANK to its ligand markedly reducing bone resorption, increases bone density, and reduces fractures and is approved for osteoporosis. Parathyroid hormone PTH 1–34 (teriparatide) stimulates bone formation through inhibition of sclerostin, DKK1, and frizzled protein; increases BMD; improves microarchitecture; and decreases fractures and is approved for osteoporosis. The anti-sclerostin antibodies (romosozumab, blosozumab) increase bone mass by neutralizing the negative effects of sclerostin on the Wnt signaling pathway. These biologics are being evaluated now in a clinical trial and early data looks promising. Cathepsin K is a proteolytic enzyme that degrades bone matrix and inhibitors such as odanacatib show increasing bone density and perhaps decreased fractures. The potential power of combining these newer antiresorptives with the newer anabolic agents could theoretically increase bone mass rapidly to normal within 1 year and reduce fractures. These newer treatments are revolutionizing the management of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pacifici R (1996) Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 11:1043–1051

    Article  PubMed  CAS  Google Scholar 

  2. Riggs BL, Khosla S, Melton LJ III (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13:763–773

    Article  PubMed  CAS  Google Scholar 

  3. Hofbauer LC et al (2000) The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 15:2–12

    Article  PubMed  CAS  Google Scholar 

  4. Shevde NK, Bendixen AC, Dienger KM, Pike JW (2000) Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc Natl Acad Sci U S A 97:7829–7834

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Balemans W, Ebeling M, Patel N et al (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10:537–543

    Article  PubMed  CAS  Google Scholar 

  6. Loots GG, Kneissel M, Keller H et al (2005) Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res 15:928–935

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Li X, Ominsky MS, Niu QT et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869

    Article  PubMed  Google Scholar 

  8. Li X, Ominsky MS, Warmington KS et al (2009) Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24:578–588

    Article  PubMed  CAS  Google Scholar 

  9. Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192

    Article  PubMed  CAS  Google Scholar 

  10. Moester MJ, Papapoulos SE, Lowik CW et al (2010) Sclerostin: current knowledge and future perspectives. Calcif Tissue Int 87:99–107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Ke HZ, Richards WG, Li X, Ominsky MS (2012) Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev 33(5):747–783. doi:10.1210/er.2011-1060. Epub 2012 Jun 20

    Article  PubMed  CAS  Google Scholar 

  12. Glantschnig H, Hampton RA, Lu P et al (2010) Generation and selection of novel fully human monoclonal antibodies that neutralize Dickkopf-1 (DKK1) inhibitory function in vitro and increase bone mass in vivo. J Biol Chem 285(51):40135–40147. doi:10.1074/jbc.M110.166892

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Prolia 60 mg solution for injection in a pre-filled syringe: EU summary of product characteristics. Breda: Amgen Europe B.V., 2010 May 26.

  14. Xgeva (denosumab) injection, for subcutaneous use: US prescribing information. Thousand Oaks (CA): Amgen Inc., 2010.

  15. Miller PD, Bolognese MA, Lewiecki EM et al (2008) Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone 43(2):222–229

    Article  PubMed  CAS  Google Scholar 

  16. McClung MR, Lewiecki EM, Cohen SB et al (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354(8):821–831

    Article  PubMed  CAS  Google Scholar 

  17. Lewiecki EM, Miller PD, McClung MR et al (2007) Two-year treatment with denosumab (AMG 162) in a randomized phase 2 study of postmenopausal women with low BMD. J Bone Miner Res 22(12):1832–1841

    Article  PubMed  CAS  Google Scholar 

  18. Cummings SR, San Martin J, McClung MR et al (2009) Denosumab for preventionof fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756

    Article  PubMed  CAS  Google Scholar 

  19. H.G. Bone, R. Chapurlat, M.L. Brandi, et al., The effect of thee or six years of denosumab exposure in women with postmenopausal osteoporosis: results from the freedom extension, J. Clin. Endocrinol. Metab. (2013) (Epub ahead of print).

  20. Brown JP, Prince RL, Deal C et al (2009) Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res 24(1):153–161

    Article  PubMed  CAS  Google Scholar 

  21. Kendler DL, Roux C, Benhamou CL et al (2010) Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alendronate therapy. J Bone Miner Res 25(1):72–81

    Article  PubMed  CAS  Google Scholar 

  22. Reid IR, Miller PD, Brown JP et al (2010) Effects of denosumab on bone histomorphometry: the FREEDOM and STAND studies. J Bone Miner Res 25(10):2256–2265

    Article  PubMed  CAS  Google Scholar 

  23. Seeman E, Delmas PD, Hanley DA et al (2010) Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res 25(8):1886–1894

    Article  PubMed  Google Scholar 

  24. Bekker PJ, Holloway DL, Rasmussen AS et al (2004) A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res 19(7):1059–1066

    Article  PubMed  CAS  Google Scholar 

  25. Eastell R, Christiansen C, Grauer A, et al. Effects of denosumab on bone turnover markers in postmenopausal osteoporosis. J Bone Miner Res. Epub 2010 Sep 13

  26. Block GA, Bone HG, Fang L et al (2012) A single-dose study of denosumab in patients with various degrees of renal impairment. J Bone Miner Res 27(7):1471–1479. doi:10.1002/jbmr.1613

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Neer RM, Arnaud CD, Zanchetta JR et al (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434

    Article  PubMed  CAS  Google Scholar 

  28. Zanchetta JR, Bogado CE, Ferretti JL et al (2003) Effects of teriparatide [recombinant human parathyroid hormone (1–34)] on cortical bone in postmenopausal women with osteoporosis. J Bone Miner Res 18:539–543

    Article  PubMed  CAS  Google Scholar 

  29. Greenspan SL, Bone HG, Ettinger MP et al (2007) Effect of recombinant human parathyroid hormone (1–84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann Intern Med 146:326

    Article  PubMed  Google Scholar 

  30. Eastell R, Nickelsen T, Marin F et al (2009) Sequential treatment of severe postmenopausal osteoporosis after teriparatide: final results of the randomized, controlled European study of Forsteo (EUROFORS). J Bone Miner Res 24:726

    Article  PubMed  CAS  Google Scholar 

  31. Lindsay R, Nieves J, Formica C et al (1997) Randomised controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. Lancet 350:550–555

    Article  PubMed  CAS  Google Scholar 

  32. Cosman F, Nieves J, Woelfert L et al (2001) Parathyroid hormone added to established hormone therapy: effects on vertebral fracture and maintenance of bone mass after parathyroid hormone withdrawal. J Bone Miner Res 16:925–931

    Article  PubMed  CAS  Google Scholar 

  33. Ste-Marie LG, Schwartz SL, Hossain A, Desaiah D, Gaich GA (2006) Effect of teriparatide [rhPTH (1–34)] on BMD when given to postmenopausal women receiving hormone replacement therapy. J Bone Miner Res 21:283–291

    Article  PubMed  CAS  Google Scholar 

  34. Deal C, Omizo M, Schwartz EN et al (2005) Combination teriparatide and raloxifene therapy for postmenopausal osteoporosis: results from a 6-month double-blind placebo-controlled trial. J Bone Miner Res 20:1905–1911

    Article  PubMed  CAS  Google Scholar 

  35. Black DM, Greenspan SL, Ensrud KE et al (2003) The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 349:1207–1215

    Article  PubMed  CAS  Google Scholar 

  36. Finkelstein JS, Hayes A, Hunzelman JL, Wyland JJ, Lee H, Neer RM (2003) The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med 349:1216–1226

    Article  PubMed  CAS  Google Scholar 

  37. Black DM, Bilezikian JP, Ensrud KE et al (2005) One year of alendronate after one year of parathyroid hormone (1–84) for osteoporosis. N Engl J Med 353:555–565

    Article  PubMed  CAS  Google Scholar 

  38. J.N. Tsai, A.V. Uihlein, H. Lee, Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial, Lancet 382 (July (9886)) (2013) 50–56, http://dx.doi.org/10.1016/S0140-6736(13)60856-9.

  39. Leder BZ, Tsai JN, Uihlein AV Two years of denosumab and teriparatide administration in postmenopausal women with osteoporosis (The DATA Extension Study): a randomized controlled trial. J Clin Endocrinol Metab. 2014 Feb 11:jc20134440. [Epub ahead of print]

  40. Kurland ES, Cosman F, McMahon DJ et al (2000) Parathyroid hormone as a therapy for idiopathic osteoporosis in men: effects on bone mineral density and bone markers. J Clin Endocrinol Metab 85:3069–3076

    PubMed  CAS  Google Scholar 

  41. Orwoll ES, Scheele WH, Paul S et al (2003) The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res 18:9–17

    Article  PubMed  CAS  Google Scholar 

  42. Forteo (teriparatide [rDNA origin] injection) [package insert]. Product information. Indianapolis, Ind: Eli Lilly and Co; 2002.

  43. Babcook J, Leslie K, Olsen O et al (1996) A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities. Proc Natl Acad Sci U S A 93(15):7843–7848

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Veverka V, Henry A, Slocombe P et al (2009) Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J Biol Chem 284:10890–10900

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Ominsky M, Vlasseros F, Jolette J et al (2010) Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res 25:948–959

    Article  PubMed  CAS  Google Scholar 

  46. Agholme F, Li X, Isaksson H et al (2010) Sclerostin antibody treatment enhances metaphyseal bone healing in rats. J Bone Miner Res 25(11):2412–2418

    Article  PubMed  CAS  Google Scholar 

  47. Li X, Warmington KS, Niu QT, Asuncion FJ, Barrero M, Grisanti M et al (2010) Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass and bone strength in aged male rats. J Bone Miner Res 25(12):2647–2656

    Article  PubMed  Google Scholar 

  48. Ominsky M, Samadfan R, Jolette J et al (2009) Sclerostin monoclonal antibody stimulates bone formation and improves the strength and density of the fracture callus and lumbar spine in a primate fibular osteotomy model. J Bone Miner Res 24(1):S89–S90

    Google Scholar 

  49. Padhi D, Jang G, Stouch B, Fang L, Posvar E (2011) Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26:19–26

    Article  PubMed  CAS  Google Scholar 

  50. McClung M, Grauer A, Boonen S et al (2012) Inhibition of sclerostin with AMG 785 in postmenopausal women with low bone mineral density: phase 2 trial results. J Bone Miner Res 27(1):S8

    Article  Google Scholar 

  51. McClung MR, Grauer A, Boonen S et al (2014) Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370(5):412–420. doi:10.1056/NEJMoa1305224. Epub 2014 Jan 1

    Article  PubMed  CAS  Google Scholar 

  52. McColm J, Womack T, Hu L et al (2012) Blosozumab, a humanized monoclonal antibody against sclerostin, demonstrated anabolic effects on bone in postmenopausal women. J Bone Miner Res 27(1):S9

    Google Scholar 

  53. Benson, C., Robins, D., Recker, R., et al. (2013) Effect of blosozumab on bone mineral density: results of a phase 2 study of postmenopausal women with low bone mineral density. Bone Abstracts 1: OC5.3.

  54. Rodan SB, Duong LT (2008) Cathepsin K—a new molecular target for osteoporosis. IBMS BoneKEy 5:16–24

    Article  Google Scholar 

  55. Stoch SA, Zajic S, Stone J et al (2009) Effect of the cathepsin K inhibitor odanacatib on bone resorption biomarkers in healthy postmenopausal women: two double-blind, randomized, placebo-controlled phase I studies. Clin Pharmacol Ther 86:175–182

    Article  PubMed  CAS  Google Scholar 

  56. Bone HG, McClung MR, Roux C (2010) Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J Bone Miner Res 25:937–947

    PubMed  Google Scholar 

  57. Brixen K, Chapurlat R, Cheung AM et al (2013) Bone density, turnover, and estimated strength in postmenopausal women treated with odanacatib: a randomized trial. J Clin Endocrinol Metab 98:571–580

    Article  PubMed  CAS  Google Scholar 

  58. Eisman JA, Bone HG, Hosking DJ et al (2011) Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J Bone Miner Res 26:242–251

    Article  PubMed  CAS  Google Scholar 

  59. Tella SH, Gallagher JC (2013) Bazedoxifene + conjugated estrogens in HT for the prevention of osteoporosis and treatment of vasomotor symptoms associated with the menopause. Expert Opin Pharmacother 14(17):2407–2420. doi:10.1517/14656566.2013.844790. Epub 2013 Oct 7

    Article  PubMed  CAS  Google Scholar 

  60. Tella SH, Gallagher JC (2013) Prevention and treatment of postmenopausal osteoporosis. J Steroid Biochem Mol Biol. doi:10.1016/j.jsbmb.2013.09.008

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute on Aging (RO1-AG28168) and the Office of Dietary Supplements and by a grant from the Department of Defense (DOD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sri Harsha Tella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tella, S.H., Gallagher, J.C. Biological agents in management of osteoporosis. Eur J Clin Pharmacol 70, 1291–1301 (2014). https://doi.org/10.1007/s00228-014-1735-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-014-1735-5

Keywords

Navigation