Skip to main content

Advertisement

Log in

Solid Tumours Show Osteotropism: Mechanisms of Bone Metastases

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Bone metastases are a dismal consequence of cancer, causing severe morbidity and reducing the quality of life of patients. Solid tumours such as breast, prostate, lung and kidney cancer showed a marked osteotropism dependent on the special microenvironment provided by bone. Different cellular types are involved in the formation of bone metastases, indeed bone, immune system and tumour cells interact leading to bone lesions. During the bone resorption process, there is an intense cross-talk between immune system cells and osteoclasts (OCs). In particular, T cells release factors and cytokines, which rule osteoclastogenesis, and on the other hand, OCs produce factors that act on T cells, which are mediators of the tumour growth in bone. This review will summarize the main mechanisms of action in cancer-induced bone disease with particular regard to the cross-talk among cells of bone, tumour and immune system, focusing on factors and cytokines released by osteoclast, osteoblast, tumour cells and T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12(20 Pt 2):6243s–9s.

    Article  PubMed  Google Scholar 

  2. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2(8):584–93.

    Article  PubMed  CAS  Google Scholar 

  3. Paget S. The distribution of secondary growths in cancer of breast. Lancet. 1889;1:571–3.

    Article  Google Scholar 

  4. Clezardin P, Teti A. Bone metastasis: pathogenesis and therapeutic implications. Clin Exp Metastasis. 2007;24(8):599–608.

    Article  PubMed  CAS  Google Scholar 

  5. Aft R, Naughton M, Trinkaus K, Watson M, Ylagan L, Chavez-MacGregor M, et al. Effect of zoledronic acid on disseminated tumour cells in women with locally advanced breast cancer: an open label, randomised, phase 2 trial. Lancet Oncol. 2010;11(5):421–8.

    Article  PubMed  CAS  Google Scholar 

  6. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF, et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol. 1998;153(3):865–73.

    Article  PubMed  CAS  Google Scholar 

  7. Morgan TM, Lange PH, Porter MP, Lin DW, Ellis WJ, Gallaher IS, et al. Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin Cancer Res. 2009;15(2):677–83.

    Article  PubMed  CAS  Google Scholar 

  8. Diel IJ, Kaufmann M, Costa SD, Holle R, von Minckwitz G, Solomayer EF, et al. Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst. 1996;88(22):1652–8.

    Article  PubMed  CAS  Google Scholar 

  9. D’Amico L, Patanè S, Grange C, Bussolati B, Isella C, Fontani L, et al. Primary breast cancer stem-like cells metastasise to bone, switch phenotype and acquire a bone tropism signature. Br J Cancer. 2013;108:2525–36.

    Google Scholar 

  10. Mori G, D’Amelio P, Faccio R, Brunetti G. The interplay between the bone and the immune system. Clin Dev Immunol. 2013;2013:720504.

    Article  PubMed  Google Scholar 

  11. Salcedo R, Oppenheim JJ. Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation. 2003;10(3–4):359–70.

    Article  PubMed  CAS  Google Scholar 

  12. Wang J, Shiozawa Y, Wang Y, Jung Y, Pienta KJ, Mehra R, et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem. 2008;283(7):4283–94.

    Article  PubMed  CAS  Google Scholar 

  13. Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev. 2006;25(3):435–57.

    Article  PubMed  CAS  Google Scholar 

  14. Stover DG, Bierie B, Moses HL. A delicate balance: TGF-beta and the tumor microenvironment. J Cell Biochem. 2007;101(4):851–61.

    Article  PubMed  CAS  Google Scholar 

  15. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350(16):1655–64.

    Article  PubMed  CAS  Google Scholar 

  16. Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest. 1996;98(7):1544–9.

    Article  PubMed  CAS  Google Scholar 

  17. Shen X, Falzon M. PTH-related protein modulates PC-3 prostate cancer cell adhesion and integrin subunit profile. Mol Cell Endocrinol. 2003;199(1–2):165–77.

    Article  PubMed  CAS  Google Scholar 

  18. Karaplis AC, Goltzman D. PTH and PTHrP effects on the skeleton. Rev Endocr Metab Disord. 2000;1(4):331–41.

    Article  PubMed  CAS  Google Scholar 

  19. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA. 1998;95(7):3597–602.

    Article  PubMed  CAS  Google Scholar 

  20. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–76.

    Article  PubMed  CAS  Google Scholar 

  21. Blair JM, Zhou H, Seibel MJ, Dunstan CR. Mechanisms of disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. Nat Clin Pract Oncol. 2006;3(1):41–9.

    Article  PubMed  CAS  Google Scholar 

  22. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature. 2006;440(7084):692–6.

    Article  PubMed  CAS  Google Scholar 

  23. Rose AA, Siegel PM. Breast cancer-derived factors facilitate osteolytic bone metastasis. Bull Cancer. 2006;93(9):931–43.

    PubMed  CAS  Google Scholar 

  24. Blanchard F, Duplomb L, Baud’huin M, Brounais B. The dual role of IL-6-type cytokines on bone remodeling and bone tumors. Cytokine Growth Factor Rev. 2009;20(1):19–28.

    Article  PubMed  CAS  Google Scholar 

  25. Bendre MS, Montague DC, Peery T, Akel NS, Gaddy D, Suva LJ. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone. 2003;33(1):28–37.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang Y, Fujita N, Oh-hara T, Morinaga Y, Nakagawa T, Yamada M, et al. Production of interleukin-11 in bone-derived endothelial cells and its role in the formation of osteolytic bone metastasis. Oncogene. 1998;16(6):693–703.

    Article  PubMed  CAS  Google Scholar 

  27. Sethi N, Dai X, Winter CG, Kang Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell. 2011;19(2):192–205.

    Article  PubMed  CAS  Google Scholar 

  28. Santagata S, Demichelis F, Riva A, Varambally S, Hofer MD, Kutok JL, et al. JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res. 2004;64(19):6854–7.

    Article  PubMed  CAS  Google Scholar 

  29. Chiba S. Notch signaling in stem cell systems. Stem Cells. 2006;24(11):2437–47.

    Article  PubMed  CAS  Google Scholar 

  30. Kingsley LA, Fournier PG, Chirgwin JM, Guise TA. Molecular biology of bone metastasis. Mol Cancer Ther. 2007;6(10):2609–17.

    Article  PubMed  CAS  Google Scholar 

  31. Arnett TR. Extracellular pH regulates bone cell function. J Nutr. 2008;138(2):415S–8S.

    PubMed  CAS  Google Scholar 

  32. McMahon S, Charbonneau M, Grandmont S, Richard DE, Dubois CM. Transforming growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression. J Biol Chem. 2006;281(34):24171–81.

    Article  PubMed  CAS  Google Scholar 

  33. Hiraga T, Kizaka-Kondoh S, Hirota K, Hiraoka M, Yoneda T. Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer Res. 2007;67(9):4157–63.

    Article  PubMed  CAS  Google Scholar 

  34. Sharan K, Siddiqui JA, Swarnkar G, Chattopadhyay N. Role of calcium-sensing receptor in bone biology. Indian J Med Res. 2008;127(3):274–86.

    PubMed  CAS  Google Scholar 

  35. Sanders JL, Chattopadhyay N, Kifor O, Yamaguchi T, Butters RR, Brown EM. Extracellular calcium-sensing receptor expression and its potential role in regulating parathyroid hormone-related peptide secretion in human breast cancer cell lines. Endocrinology. 2000;141(12):4357–64.

    Article  PubMed  CAS  Google Scholar 

  36. Pacifici R. The immune system and bone. Arch Biochem Biophys. 2010;503(1):41–53.

    Article  PubMed  CAS  Google Scholar 

  37. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature. 2000;408(6812):600–5.

    Article  PubMed  CAS  Google Scholar 

  38. Sato K, Satoh T, Shizume K, Yamakawa Y, Ono Y, Demura H, et al. Prolonged decrease of serum calcium concentration by murine gamma-interferon in hypercalcemic, human tumor (EC-GI)-bearing nude mice. Cancer Res. 1992;52(2):444–9.

    PubMed  CAS  Google Scholar 

  39. Gao Y, Grassi F, Ryan MR, Terauchi M, Page K, Yang X, et al. IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest. 2007;117(1):122–32.

    Article  PubMed  CAS  Google Scholar 

  40. Cenci S, Toraldo G, Weitzmann MN, Roggia C, Gao Y, Qian WP, et al. Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class II transactivator. Proc Natl Acad Sci USA. 2003;100(18):10405–10.

    Article  PubMed  CAS  Google Scholar 

  41. Takayanagi H, Kim S, Taniguchi T. Signaling crosstalk between RANKL and interferons in osteoclast differentiation. Arthritis Res. 2002;4(Suppl 3):S227–32.

    Article  PubMed  Google Scholar 

  42. Pacifici R. Estrogen deficiency, T cells and bone loss. Cell Immunol. 2008;252(1–2):68–80.

    Article  PubMed  CAS  Google Scholar 

  43. Kiesel JR, Buchwald ZS, Aurora R. Cross-presentation by osteoclasts induces FoxP3 in CD8+ T cells. J Immunol. 2009;182(9):5477–87.

    Article  PubMed  CAS  Google Scholar 

  44. Senthilkumar R, Lee HW. CD137L- and RANKL-mediated reverse signals inhibit osteoclastogenesis and T lymphocyte proliferation. Immunobiology. 2009;214(2):153–61.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang K, Kim S, Cremasco V, Hirbe AC, Collins L, Piwnica-Worms D, et al. CD8+ T cells regulate bone tumor burden independent of osteoclast resorption. Cancer Res. 2011;71(14):4799–808.

    Article  PubMed  CAS  Google Scholar 

  46. Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med. 2009;361(9):888–98.

    Article  PubMed  CAS  Google Scholar 

  47. Feuerer M, Rocha M, Bai L, Umansky V, Solomayer EF, Bastert G, et al. Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int J Cancer. 2001;92(1):96–105.

    Article  PubMed  CAS  Google Scholar 

  48. Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM, et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL–RANK signalling. Nature. 2011;470(7335):548–53.

    Article  PubMed  CAS  Google Scholar 

  49. Wrzesinski SH, Wan YY, Flavell RA. Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res. 2007;13(18 Pt 1):5262–70.

    Article  PubMed  CAS  Google Scholar 

  50. Schilbach K, Geiselhart A, Handgretinger R. Induction of proliferation and augmented cytotoxicity of gammadelta T lymphocytes by bisphosphonate clodronate. Blood. 2001;97(9):2917–8.

    Article  PubMed  CAS  Google Scholar 

  51. Yoon SH, Lee Y, Kim HJ, Lee ZH, Hyung SW, Lee SW, et al. Lyn inhibits osteoclast differentiation by interfering with PLCgamma1-mediated Ca2+ signaling. FEBS Lett. 2009;583(7):1164–70.

    Article  PubMed  CAS  Google Scholar 

  52. Faccio R, Cremasco V. PLCgamma2: where bone and immune cells find their common ground. Ann N Y Acad Sci. 2010;1192:124–30.

    Article  PubMed  CAS  Google Scholar 

  53. Roato I, Grano M, Brunetti G, Colucci S, Mussa A, Bertetto O, et al. Mechanisms of spontaneous osteoclastogenesis in cancer with bone involvement. FASEB J. 2005;19(2):228–30.

    PubMed  CAS  Google Scholar 

  54. Colucci S, Brunetti G, Rizzi R, Zonno A, Mori G, Colaianni G, et al. T cells support osteoclastogenesis in an in vitro model derived from human multiple myeloma bone disease: the role of the OPG/TRAIL interaction. Blood. 2004;104(12):3722–30.

    Article  PubMed  CAS  Google Scholar 

  55. Weitzmann MN, Roggia C, Toraldo G, Weitzmann L, Pacifici R. Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J Clin Invest. 2002;110(11):1643–50.

    PubMed  CAS  Google Scholar 

  56. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest. 2000;106(10):1229–37.

    Article  PubMed  CAS  Google Scholar 

  57. Ryan MR, Shepherd R, Leavey JK, Gao Y, Grassi F, Schnell FJ, et al. An IL-7-dependent rebound in thymic T cell output contributes to the bone loss induced by estrogen deficiency. Proc Natl Acad Sci USA. 2005;102(46):16735–40.

    Article  PubMed  CAS  Google Scholar 

  58. Colucci S, Brunetti G, Cantatore FP, Oranger A, Mori G, Quarta L, et al. Lymphocytes and synovial fluid fibroblasts support osteoclastogenesis through RANKL, TNFalpha, and IL-7 in an in vitro model derived from human psoriatic arthritis. J Pathol. 2007;212(1):47–55.

    Article  PubMed  CAS  Google Scholar 

  59. Colucci S, Mori G, Brunetti G, Coricciati M, Pignataro P, Oranger A, et al. Interleukin-7 production by B lymphocytes affects the T cell-dependent osteoclast formation in an in vitro model derived from human periodontitis patients. Int J Immunopathol Pharmacol. 2005;18(3 Suppl):13–9.

    PubMed  CAS  Google Scholar 

  60. Roato I, Brunetti G, Gorassini E, Grano M, Colucci S, Bonello L, et al. IL-7 up-regulates TNF-alpha-dependent osteoclastogenesis in patients affected by solid tumor. PLoS ONE. 2006;1:e124.

    Article  PubMed  Google Scholar 

  61. Roato I, D’Amelio P, Gorassini E, Grimaldi A, Bonello L, Fiori C, et al. Osteoclasts are active in bone forming metastases of prostate cancer patients. PLoS ONE. 2008;3(11):e3627.

    Article  PubMed  Google Scholar 

  62. Roato I, Gorassini E, Buffoni L, Lyberis P, Ruffini E, Bonello L, et al. Spontaneous osteoclastogenesis is a predictive factor for bone metastases from non-small cell lung cancer. Lung Cancer. 2008;61(1):109–16.

    Article  PubMed  CAS  Google Scholar 

  63. Giuliani N, Colla S, Sala R, Moroni M, Lazzaretti M, La Monica S, et al. Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood. 2002;100(13):4615–21.

    Article  PubMed  CAS  Google Scholar 

  64. Roato I, Gorassini E, Brunetti G, Grano M, Ciuffreda L, Mussa A, et al. IL-7 modulates osteoclastogenesis in patients affected by solid tumors. Ann N Y Acad Sci. 2007;1117:377–84.

    Article  PubMed  CAS  Google Scholar 

  65. Roato I, Caldo D, Godio L, D’Amico L, Giannoni P, Morello E, et al. Bone invading NSCLC cells produce IL-7: mice model and human histologic data. BMC Cancer. 2010;10:12.

    Article  PubMed  Google Scholar 

  66. Dai J, Keller J, Zhang J, Lu Y, Yao Z, Keller ET. Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bone metastases through a dual mechanism. Cancer Res. 2005;65(18):8274–85.

    Article  PubMed  CAS  Google Scholar 

  67. Ye L, Kynaston HG, Jiang WG. Bone metastasis in prostate cancer: molecular and cellular mechanisms (review). Int J Mol Med. 2007;20(1):103–11.

    PubMed  CAS  Google Scholar 

  68. Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8(12):915–28.

    Article  PubMed  CAS  Google Scholar 

  69. Rubin J, Chung LW, Fan X, Zhu L, Murphy TC, Nanes MS, et al. Prostate carcinoma cells that have resided in bone have an upregulated IGF-I axis. Prostate. 2004;58(1):41–9.

    Article  PubMed  CAS  Google Scholar 

  70. Yin JJ, Mohammad KS, Kakonen SM, Harris S, Wu-Wong JR, Wessale JL, et al. A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci USA. 2003;100(19):10954–9.

    Article  PubMed  CAS  Google Scholar 

  71. Guise TA, Yin JJ, Mohammad KS. Role of endothelin-1 in osteoblastic bone metastases. Cancer. 2003;97(3 Suppl):779–84.

    Article  PubMed  Google Scholar 

  72. Clines GA, Mohammad KS, Bao Y, Stephens OW, Suva LJ, Shaughnessy JD Jr, et al. Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation. Mol Endocrinol. 2007;21(2):486–98.

    Article  PubMed  CAS  Google Scholar 

  73. Keller ET, Zhang J, Cooper CR, Smith PC, McCauley LK, Pienta KJ, et al. Prostate carcinoma skeletal metastases: cross-talk between tumor and bone. Cancer Metastasis Rev. 2001;20(3–4):333–49.

    Article  PubMed  CAS  Google Scholar 

  74. Hall CL, Kang S, MacDougald OA, Keller ET. Role of wants in prostate cancer bone metastases. J Cell Biochem. 2006;97(4):661–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the organizers of the Benish Trophy and the Italian Ministry of Health: Ricerca Sanitaria Finalizzata e Giovani Ricercatori 2009 (GR 2009-1584485) for supporting this work.

Disclosures

Conflict of interest

The authors Ilaria Roato and Riccardo Ferracini declare that they have no conflict of interest.

Animal/Human studies

This review does not contain any studies with human or animal subjects performed by the any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Roato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roato, I., Ferracini, R. Solid Tumours Show Osteotropism: Mechanisms of Bone Metastases. Clinic Rev Bone Miner Metab 11, 87–93 (2013). https://doi.org/10.1007/s12018-013-9144-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-013-9144-3

Keywords

Navigation