Skip to main content

Advertisement

Log in

Bone Metastasis from Solid Tumors: Biologic and Clinical State of the Art

  • Review Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Bone metastases are a frequent and debilitating consequence for many tumors, of which breast, lung, prostate, and kidney cancer are the most common. The dialog among cancer cells, bone microenvironment, and immune system regulates bone metastasis formation. Indeed, bone and immune system are strictly linked to each other because bone regulates the hematopoietic stem cells from which all cells of the immune system derive. Many immunoregulatory cytokines influence the fate of bone cells and promote the growth of tumor cells in bone, contributing to sustain the vicious cycle of bone metastasis. Bone is an attractive soil for cancer cells, which can remain dormant for years or directly form bone lesions. The fate of cancer cells after their arrival to bone marrow depends on a complex cross-talk among cancer, bone, and immune cells in the microenvironment. This review provides an overview of the different steps occurring during bone metastatic process, with particular attention to the osteoimmunology field. Furthermore, we will revise the current available clinical approaches for the therapy of bone metastatic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang Y, Pantel K. Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell. 2013;23(5):573–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Coleman RE. Management of bone metastases. Oncologist. 2000;5(6):463–70.

    Article  CAS  PubMed  Google Scholar 

  4. Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001;27(3):165–76.

    Article  CAS  PubMed  Google Scholar 

  5. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3(6):537–49.

    Article  CAS  PubMed  Google Scholar 

  6. D'Amico L, Patane S, Grange C, Bussolati B, Isella C, Fontani L, et al. Primary breast cancer stem-like cells metastasise to bone, switch phenotype and acquire a bone tropism signature. Br J Cancer. 2013;108(12):2525–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest. 2011;121(4):1298–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giles AJ, Reid CM, Evans JD, Murgai M, Vicioso Y, Highfill SL, et al. Activation of hematopoietic stem/progenitor cells promotes immunosuppression within the pre-metastatic niche. Cancer Res. 2016;76(6):1335–47.

    Article  CAS  PubMed  Google Scholar 

  9. Herroon MK, Rajagurubandara E, Hardaway AL, Powell K, Turchick A, Feldmann D, et al. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget. 2013;4(11):2108–23.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shiozawa Y, Eber MR, Berry JE, Taichman RS. Bone marrow as a metastatic niche for disseminated tumor cells from solid tumors. Bonekey Rep. 2015;4:689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Azizidoost S, Babashah S, Rahim F, Shahjahani M, Saki N. Bone marrow neoplastic niche in leukemia. Hematology. 2014 Jun;19(4):232–8.

    Article  CAS  PubMed  Google Scholar 

  12. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.

    Article  CAS  PubMed  Google Scholar 

  13. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD 3100, a CXCR4 antagonist. J Exp Med. 2005;201(8):1307–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang J, Shiozawa Y, Wang Y, Jung Y, Pienta KJ, Mehra R, et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem. 2008;283(7):4283–94.

    Article  CAS  PubMed  Google Scholar 

  15. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.

    Article  CAS  PubMed  Google Scholar 

  16. Richert MM, Vaidya KS, Mills CN, Wong D, Korz W, Hurst DR, et al. Inhibition of CXCR4 by CTCE-9908 inhibits breast cancer metastasis to lung and bone. Oncol Rep. 2009;21(3):761–7.

    CAS  PubMed  Google Scholar 

  17. Bertolini G, D'Amico L, Moro M, Landoni E, Perego P, Miceli R, et al. Microenvironment-modulated metastatic CD133+/CXCR4+/EpCAM-lung cancer-initiating cells sustain tumor dissemination and correlate with poor prognosis. Cancer Res. 2015;75(17):3636–49.

    Article  CAS  PubMed  Google Scholar 

  18. Beider K, Abraham M, Begin M, Wald H, Weiss ID, Wald O, et al. Interaction between CXCR4 and CCL20 pathways regulates tumor growth. PLoS One. 2009;4(4):e5125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Schutyser E, Struyf S, Van Damme J. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev. 2003;14(5):409–26.

    Article  CAS  PubMed  Google Scholar 

  20. D'Amico L, Belisario D, Migliardi G, Grange C, Bussolati B, D'Amelio P, et al. C-met inhibition blocks bone metastasis development induced by renal cancer stem cells. Oncotarget. 2016;7(29):45525–37.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Giuliani N, Lisignoli G, Colla S, Lazzaretti M, Storti P, Mancini C, et al. CC-chemokine ligand 20/macrophage inflammatory protein-3alpha and CC-chemokine receptor 6 are overexpressed in myeloma microenvironment related to osteolytic bone lesions. Cancer Res. 2008;68(16):6840–50.

    Article  CAS  PubMed  Google Scholar 

  22. Hu W, Zhen X, Xiong B, Wang B, Zhang W, Zhou W. CXCR6 is expressed in human prostate cancer in vivo and is involved in the in vitro invasion of PC3 and LNCap cells. Cancer Sci. 2008;99(7):1362–9.

    Article  CAS  PubMed  Google Scholar 

  23. Ha HK, Lee W, Park HJ, Lee SD, Lee JZ, Chung MK. Clinical significance of CXCL16/CXCR6 expression in patients with prostate cancer. Mol Med Rep. 2011;4(3):419–24.

    CAS  PubMed  Google Scholar 

  24. Nakamura ES, Koizumi K, Kobayashi M, Saitoh Y, Arita Y, Nakayama T, et al. RANKL-induced CCL22/macrophage-derived chemokine produced from osteoclasts potentially promotes the bone metastasis of lung cancer expressing its receptor CCR4. Clin Exp Metastasis. 2006;23(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  25. Li L, Bhatia R. Stem cell quiescence. Clin Cancer Res. 2011;17(15):4936–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shiozawa Y, Pedersen EA, Patel LR, Ziegler AM, Havens AM, Jung Y, et al. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia. 2010;12(2):116–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15(7):807–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Johnson RW, Finger EC, Olcina MM, Vilalta M, Aguilera T, Miao Y, et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol. 2016;18(10):1078–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2011;481(7379):85–9.

    Article  PubMed  CAS  Google Scholar 

  30. Wang H, Yu C, Gao X, Welte T, Muscarella AM, Tian L, et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell. 2015;27(2):193–210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425(6960):841–6.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425(6960):836–41.

    Article  CAS  PubMed  Google Scholar 

  33. Suva LJ, Washam C, Nicholas RW, Griffin RJ. Bone metastasis: mechanisms and therapeutic opportunities. Nat Rev Endocrinol. 2011;7(4):208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chiang AC, Massague J. Molecular basis of metastasis. N Engl J Med. 2008;359(26):2814–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pecheur I, Peyruchaud O, Serre CM, Guglielmi J, Voland C, Bourre F, et al. Integrin alpha (v)beta3 expression confers on tumor cells a greater propensity to metastasize to bone. FASEB J. 2002;16(10):1266–8.

    CAS  PubMed  Google Scholar 

  36. Sung V, Stubbs JT 3rd, Fisher L, Aaron AD, Thompson EW. Bone sialoprotein supports breast cancer cell adhesion proliferation and migration through differential usage of the alpha (v)beta3 and alpha (v)beta5 integrins. J Cell Physiol. 1998;176(3):482–94.

    Article  CAS  PubMed  Google Scholar 

  37. Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M, et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell. 2011;20(6):701–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reuben JM, Lee BN, Gao H, Cohen EN, Mego M, Giordano A, et al. Primary breast cancer patients with high risk clinicopathologic features have high percentages of bone marrow epithelial cells with ALDH activity and CD44(+)CD24lo cancer stem cell phenotype. Eur J Cancer. 2011;47(10):1527–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patel SA, Ramkissoon SH, Bryan M, Pliner LF, Dontu G, Patel PS, et al. Delineation of breast cancer cell hierarchy identifies the subset responsible for dormancy. Sci Rep. 2012;2:906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Shiozawa Y, Havens AM, Jung Y, Ziegler AM, Pedersen EA, Wang J, et al. Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J Cell Biochem. 2008;105(2):370–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bussard KM, Gay CV, Mastro AM. The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev. 2008;27(1):41–55.

    Article  PubMed  Google Scholar 

  42. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350(16):1655–64.

    Article  CAS  PubMed  Google Scholar 

  43. Yoneda T, Hiraga T. Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun. 2005;328(3):679–87.

    Article  CAS  PubMed  Google Scholar 

  44. Sanders JL, Chattopadhyay N, Kifor O, Yamaguchi T, Butters RR, Brown EM. Extracellular calcium-sensing receptor expression and its potential role in regulating parathyroid hormone-related peptide secretion in human breast cancer cell lines. Endocrinology. 2000;141(12):4357–64.

    Article  CAS  PubMed  Google Scholar 

  45. Kim W, Takyar FM, Swan K, Jeong J, Van Houten J, Sullivan C, et al. Calcium-sensing receptor promotes breast cancer by stimulating intracrine actions of parathyroid hormone-related protein. Cancer Res. 2016;76(18):5348–60.

    Article  CAS  PubMed  Google Scholar 

  46. Sethi N, Dai X, Winter CG, Kang Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell. 2011;19(2):192–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dos Anjos PB, Andres Cordero da Luz F, Socorro Faria S, Peixoto Ferreira de Souza L, Cristina Brigido Tavares P, Alonso Goulart V, et al. The multifaceted role of extracellular vesicles in metastasis: priming the soil for seeding. Int J Cancer. 2017.

  48. Bigagli E, Luceri C, Guasti D, Cinci L. Exosomes secreted from human colon cancer cells influence the adhesion of neighboring metastatic cells: role of micro RNA-210. Cancer Biol Ther. 2016;11:1–8.

    Google Scholar 

  49. Wang Z, von Au A, Schnolzer M, Hackert T, Zoller M. CD44v6-competent tumor exosomes promote motility, invasion and cancer-initiating cell marker expression in pancreatic and colorectal cancer cells. Oncotarget. 2016;7(34):55409–36.

    Article  PubMed  PubMed Central  Google Scholar 

  50. McAllister SS, Weinberg RA. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol. 2014;16(8):717–27.

    Article  CAS  PubMed  Google Scholar 

  51. Kostenuik PJ, Shalhoub V. Osteoprotegerin: a physiological and pharmacological inhibitor of bone resorption. Curr Pharm Des. 2001;7(8):613–35.

    Article  CAS  PubMed  Google Scholar 

  52. Hofbauer LC, Kuhne CA, Viereck V. The OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskelet Neuronal Interact. 2004;4(3):268–75.

    CAS  PubMed  Google Scholar 

  53. Santini D, Perrone G, Roato I, Godio L, Pantano F, Grasso D, et al. Expression pattern of receptor activator of NFkappaB (RANK) in a series of primary solid tumors and related bone metastases. J Cell Physiol. 2011;226(3):780–4.

    Article  CAS  PubMed  Google Scholar 

  54. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res. 2000;15(1):2–12.

    Article  CAS  PubMed  Google Scholar 

  55. Roato I, Grano M, Brunetti G, Colucci S, Mussa A, Bertetto O, et al. Mechanisms of spontaneous osteoclastogenesis in cancer with bone involvement. FASEB J. 2005;19(2):228–30.

    CAS  PubMed  Google Scholar 

  56. Roato I, Gorassini E, Buffoni L, Lyberis P, Ruffini E, Bonello L, et al. Spontaneous osteoclastogenesis is a predictive factor for bone metastases from non-small cell lung cancer. Lung Cancer. 2008;61(1):109–16.

    Article  CAS  PubMed  Google Scholar 

  57. Colucci S, Brunetti G, Rizzi R, Zonno A, Mori G, Colaianni G, et al. T cells support osteoclastogenesis in an in vitro model derived from human multiple myeloma bone disease: the role of the OPG/TRAIL interaction. Blood. 2004;104(12):3722–30.

    Article  CAS  PubMed  Google Scholar 

  58. Appasamy PM. Biological and clinical implications of interleukin-7 and lymphopoiesis. Cytokines Cell Mol Ther. 1999;5(1):25–39.

    CAS  PubMed  Google Scholar 

  59. Namen AE, Lupton S, Hjerrild K, Wignall J, Mochizuki DY, Schmierer A, et al. Stimulation of B-cell progenitors by cloned murine interleukin-7. Nature. 1988;333(6173):571–3.

    Article  CAS  PubMed  Google Scholar 

  60. Lee SK, Kalinowski JF, Jastrzebski SL, Puddington L, Lorenzo JA. Interleukin-7 is a direct inhibitor of in vitro osteoclastogenesis. Endocrinology. 2003;144(8):3524–31.

    Article  CAS  PubMed  Google Scholar 

  61. Miyaura C, Onoe Y, Inada M, Maki K, Ikuta K, Ito M, et al. Increased B-lymphopoiesis by interleukin 7 induces bone loss in mice with intact ovarian function: similarity to estrogen deficiency. Proc Natl Acad Sci U S A. 1997;94(17):9360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Weitzmann MN, Roggia C, Toraldo G, Weitzmann L, Pacifici R. Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J Clin Invest. 2002;110(11):1643–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Toraldo G, Roggia C, Qian WP, Pacifici R, Weitzmann MN. IL-7 induces bone loss in vivo by induction of receptor activator of nuclear factor kappa B ligand and tumor necrosis factor alpha from T cells. Proc Natl Acad Sci U S A. 2003;100(1):125–30.

    Article  CAS  PubMed  Google Scholar 

  64. Giuliani N, Colla S, Sala R, Moroni M, Lazzaretti M, La Monica S, et al. Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood. 2002;100(13):4615–21.

    Article  CAS  PubMed  Google Scholar 

  65. Roato I, Brunetti G, Gorassini E, Grano M, Colucci S, Bonello L, et al. IL-7 up-regulates TNF-alpha-dependent osteoclastogenesis in patients affected by solid tumor. PLoS One. 2006;1:e124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Roato I, Gorassini E, Brunetti G, Grano M, Ciuffreda L, Mussa A, et al. IL-7 modulates osteoclastogenesis in patients affected by solid tumors. Ann N Y Acad Sci. 2007;1117:377–84.

    Article  CAS  PubMed  Google Scholar 

  67. Roato I, Caldo D, Godio L, D'Amico L, Giannoni P, Morello E, et al. Bone invading NSCLC cells produce IL-7: mice model and human histologic data. BMC Cancer. 2010;10:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Senthilkumar R, Lee HW. CD137L- and RANKL-mediated reverse signals inhibit osteoclastogenesis and T lymphocyte proliferation. Immunobiology. 2009;214(2):153–61.

    Article  CAS  PubMed  Google Scholar 

  69. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105(7):2821–7.

    Article  CAS  PubMed  Google Scholar 

  70. Baschuk N, Rautela J, Parker BS. Bone specific immunity and its impact on metastasis. Bonekey Rep. 2015;4:665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Corcoran KE, Trzaska KA, Fernandes H, Bryan M, Taborga M, Srinivas V, et al. Mesenchymal stem cells in early entry of breast cancer into bone marrow. PLoS One. 2008;3(6):e2563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Zhang XH, Jin X, Malladi S, Zou Y, Wen YH, Brogi E, et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell. 2013;154(5):1060–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–48.

    Article  CAS  PubMed  Google Scholar 

  74. Bidwell BN, Slaney CY, Withana NP, Forster S, Cao Y, Loi S, et al. Silencing of Irf 7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med. 2012;18(8):1224–31.

    Article  CAS  PubMed  Google Scholar 

  75. Kudo-Saito C, Fuwa T, Murakami K, Kawakami Y. Targeting FSTL1 prevents tumor bone metastasis and consequent immune dysfunction. Cancer Res. 2013;73(20):6185–93.

    Article  CAS  PubMed  Google Scholar 

  76. Feuerer M, Rocha M, Bai L, Umansky V, Solomayer EF, Bastert G, et al. Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int J Cancer. 2001;92(1):96–105.

    Article  CAS  PubMed  Google Scholar 

  77. Xu Z, Hurchla MA, Deng H, Uluckan O, Bu F, Berdy A, et al. Interferon-gamma targets cancer cells and osteoclasts to prevent tumor-associated bone loss and bone metastases. J Biol Chem. 2009;284(7):4658–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang K, Kim S, Cremasco V, Hirbe AC, Collins L, Piwnica-Worms D, et al. CD8+ T cells regulate bone tumor burden independent of osteoclast resorption. Cancer Res. 2011;71(14):4799–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M, Mottram P, et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res. 2004;64(22):8451–5.

    Article  CAS  PubMed  Google Scholar 

  80. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001;166(1):678–89.

    Article  CAS  PubMed  Google Scholar 

  81. Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM, et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature. 2011;470(7335):548–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kiesel JR, Buchwald ZS, Aurora R. Cross-presentation by osteoclasts induces FoxP3 in CD8+ T cells. J Immunol. 2009;182(9):5477–87.

    Article  CAS  PubMed  Google Scholar 

  83. Roy LD, Ghosh S, Pathangey LB, Tinder TL, Gruber HE, Mukherjee P. Collagen induced arthritis increases secondary metastasis in MMTV-PyV MT mouse model of mammary cancer. BMC Cancer. 2011;11:365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Okamoto K, Takayanagi H. Regulation of bone by the adaptive immune system in arthritis. Arthritis Res Ther. 2011;13(3):219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Goldstein RH, Reagan MR, Anderson K, Kaplan DL, Rosenblatt M. Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis. Cancer Res. 2010;70(24):10044–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bronte V, Apolloni E, Cabrelle A, Ronca R, Serafini P, Zamboni P, et al. Identification of a CD11b(+)/gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood. 2000;96(12):3838–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kusmartsev S, Nagaraj S, Gabrilovich DI. Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol. 2005;175(7):4583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kusmartsev S, Gabrilovich DI. Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol. 2003;74(2):186–96.

    Article  CAS  PubMed  Google Scholar 

  89. Kusmartsev S, Gabrilovich DI. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother. 2006;55(3):237–45.

    Article  PubMed  Google Scholar 

  90. Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 2005;65(8):3044–8.

    Article  CAS  PubMed  Google Scholar 

  91. Sawant A, Deshane J, Jules J, Lee CM, Harris BA, Feng X, et al. Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Res. 2013;73(2):672–82.

    Article  CAS  PubMed  Google Scholar 

  92. Zhuang J, Zhang J, Lwin ST, Edwards JR, Edwards CM, Mundy GR, et al. Osteoclasts in multiple myeloma are derived from gr-1+CD11b+myeloid-derived suppressor cells. PLoS One. 2012;7(11):e48871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Meuser T, Pietruck C, Radbruch L, Stute P, Lehmann KA, Grond S. Symptoms during cancer pain treatment following WHO-guidelines: a longitudinal follow-up study of symptom prevalence, severity and etiology. Pain. 2001;93(3):247–57.

    Article  CAS  PubMed  Google Scholar 

  94. Portenoy RK, Lesage P. Management of cancer pain. Lancet. 1999;353(9165):1695–700.

    Article  CAS  PubMed  Google Scholar 

  95. Alongi F, Arcangeli S, Filippi AR, Ricardi U, Scorsetti M. Review and uses of stereotactic body radiation therapy for oligometastases. Oncologist. 2012;17(8):1100–7.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yu HH, Hoffe SE. Beyond the conventional role of external-beam radiation therapy for skeletal metastases: new technologies and stereotactic directions. Cancer Control. 2012;19(2):129–36.

    PubMed  Google Scholar 

  97. Das T, Banerjee S. Radiopharmaceuticals for metastatic bone pain palliation: available options in the clinical domain and their comparisons. Clin Exp Metastasis. 2017;34(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  98. Buga S, Sarria JE. The management of pain in metastatic bone disease. Cancer Control. 2012;19(2):154–66.

    CAS  PubMed  Google Scholar 

  99. Beuzeboc P, Scholl S. Prevention of bone metastases in breast cancer patients. Therapeutic perspectives. J Clin Med. 2014;3(2):521–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Alibhai SM, Zukotynski K, Walker-Dilks C, Emmenegger U, Finelli A, Morgan SC, et al. Bone Health and Bone-targeted Therapies for Prostate Cancer: a Programme in Evidence-based Care—Cancer Care Ontario Clinical Practice Guideline. Clin Oncol (R Coll Radiol). 2017.

  101. Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29(9):1125–32.

    Article  CAS  PubMed  Google Scholar 

  102. Fizazi K, Carducci M, Smith M, Damiao R, Brown J, Karsh L, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377(9768):813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lipton A, Fizazi K, Stopeck AT, Henry DH, Smith MR, Shore N, et al. Effect of denosumab versus zoledronic acid in preventing skeletal-related events in patients with bone metastases by baseline characteristics. Eur J Cancer. 2016;53:75–83.

    Article  CAS  PubMed  Google Scholar 

  104. Lipton A, Steger GG, Figueroa J, Alvarado C, Solal-Celigny P, Body JJ, et al. Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J Clin Oncol. 2007;25(28):4431–7.

    Article  CAS  PubMed  Google Scholar 

  105. Body JJ, Facon T, Coleman RE, Lipton A, Geurs F, Fan M, et al. A study of the biological receptor activator of nuclear factor-kappa B ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res. 2006;12(4):1221–8.

    Article  CAS  PubMed  Google Scholar 

  106. Lipton A, Fizazi K, Stopeck AT, Henry DH, Brown JE, Yardley DA, et al. Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, phase 3 trials. Eur J Cancer. 2012;48(16):3082–92.

    Article  CAS  PubMed  Google Scholar 

  107. Molloy AP, O'Toole GC. Orthopaedic perspective on bone metastasis. World J Orthop. 2013;4(3):114–9.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zimel MN, Hwang S, Riedel ER, Healey JH. Carbon fiber intramedullary nails reduce artifact in postoperative advanced imaging. Skelet Radiol. 2015;44(9):1317–25.

    Article  Google Scholar 

  109. Hagenaars T, Van Oijen GW, Roerdink WH, Vegt PA, Vroemen JP, Verhofstad MH, et al. Functional recovery after treatment of extra-articular distal radius fractures in the elderly using the Illumin Oss (R) system (IO-wrist); a multicenter prospective observational study. BMC Musculoskelet Disord. 2016;17:235.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Li H, Gasbarrini A, Cappuccio M, Terzi S, Paderni S, Mirabile L, et al. Outcome of excisional surgeries for the patients with spinal metastases. Eur Spine J. 2009;18(10):1423–30.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures. A systematic review. Ont Health Technol Assess Ser. 2016;16(11):1–202.

    Google Scholar 

  112. Huisman M, ter Haar G, Napoli A, Hananel A, Ghanouni P, Lovey G, et al. International consensus on use of focused ultrasound for painful bone metastases: current status and future directions. Int J Hyperth. 2015;31(3):251–9.

    Article  Google Scholar 

  113. Bianchi G, Campanacci L, Ronchetti M, Donati D. Electrochemotherapy in the treatment of bone metastases: a phase II trial. World J Surg. 2016;40(12):3088–94.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Roato.

Ethics declarations

Funding

This work was supported by Cassa di Risparmio di Torino (CRT) and Compagnia di San Paolo Foundations and by Fondazione Ricerca Molinette ONLUS.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roato, I., Massè, A., Piana, R. et al. Bone Metastasis from Solid Tumors: Biologic and Clinical State of the Art. Clinic Rev Bone Miner Metab 15, 115–122 (2017). https://doi.org/10.1007/s12018-017-9233-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-017-9233-9

Keywords

Navigation