Skip to main content

Advertisement

Log in

Impact of Diabetes and its Treatment on Bone

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Type 2 diabetes (T2DM) is associated with increased fracture risk and higher bone density (BMD), suggesting that diabetic bone is more fragile for a given density. The changes in bone quality that accompany T2DM are still not fully delineated but potential factors include more rapid bone loss, differences in cortical bone and bone structure, and changes in material properties of bone collagen due to accumulation of advanced glycation endproducts (AGEs). Increased fracture risk appears to be concentrated among patients with longer duration of diabetes while those with recent onset or with impaired glucose tolerance may instead be protected from fracture risk. Characteristics of T2DM have contradictory effects on bone strength and fracture risk. Bone strength is generally increased with larger body size and hyperinsulinemia. Features of T2DM that lead to increased bone fragility are not clearly understood but are likely to include hyperglycemia. Higher levels of glucose result in the accumulation of AGEs. In addition, hyperglycemia may have direct and indirect effects on osteocytes, osteoblasts, and osteoclasts resulting in weaker bone. Treatment of T2DM may have generally favorable effects on bone through improvements in glycemic control. However, use of thiazolidinediones (TZDs) in particular causes increased fracture risk in women, due to decreased bone formation and increased bone loss. In sum, substantial evidence now indicates that T2DM results in bone that is more fragile for a given BMD. Further research is needed to understand the specific changes in diabetic bone that cause reduced strength, to clarify the effects of hyperglycemia, and to identify other factors associated with T2DM that reduce bone quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes-a meta-analysis. Osteoporos Int. 2007;18:427–44.

    Article  PubMed  CAS  Google Scholar 

  2. Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007;166(5):495–505.

    Google Scholar 

  3. Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, et al. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab. 2001;86:32–8.

    Article  PubMed  CAS  Google Scholar 

  4. Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL, et al. Risk of fracture among women with type 2 diabetes: the women’s health initiative observational study. J Clin Endocrinol Metab. 2006;91:3404–10.

    Article  PubMed  CAS  Google Scholar 

  5. Holmberg AH, Johnell O, Nilsson PM, Nilsson J, Berglund G, Akesson K. Risk factors for fragility fracture in middle age. A prospective population-based study of 33, 000 men and women. Osteoporos Int. 2006;17:1065–77.

    Article  PubMed  CAS  Google Scholar 

  6. Melton LJ III, Leibson CL, Achenbach SJ, Therneau TM, Khosla S. Fracture risk in type 2 diabetes: update of a population-based study. J Bone Miner Res. 2008;23:1334–42.

    Article  PubMed  Google Scholar 

  7. de Liefde I, van der Klift M, de Laet CE, van Daele PL, Hofman A, Pols HA. Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int. 2005;16:1713–20.

    Article  PubMed  Google Scholar 

  8. Strotmeyer ES, Cauley JA, Schwartz AV, Nevitt MC, Resnick HE, Bauer DC, et al. Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med. 2005;165:1612–7.

    Article  PubMed  Google Scholar 

  9. Keegan TH, Kelsey JL, Sidney S, Quesenberry CP Jr. Foot problems as risk factors of fractures. Am J Epidemiol. 2002;155:926–31.

    Article  PubMed  Google Scholar 

  10. Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia. 2005;48:1292–9.

    Article  PubMed  CAS  Google Scholar 

  11. Hanley DA, Brown JP, Tenenhouse A, Olszynski WP, Ioannidis G, Berger C, et al. Associations among disease conditions, bone mineral density, and prevalent vertebral deformities in men and women 50 years of age and older: cross-sectional results from the Canadian Multicentre Osteoporosis Study. J Bone Miner Res. 2003;18:784–90.

    Article  PubMed  CAS  Google Scholar 

  12. Ensrud KE, Thompson DE, Cauley JA, Nevitt MC, Kado DM, Hochberg MC, et al. Prevalent vertebral deformities predict mortality and hospitalization in older women with low bone mass. Fracture Intervention Trial Research Group. J Am Geriatr Soc. 2000;48:241–9.

    PubMed  CAS  Google Scholar 

  13. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T. Diabetic patients have an increased risk of vertebral fractures independent of bone mineral density or diabetic complications. J Bone Miner Res. 2009;24(4):702–9.

    Article  PubMed  CAS  Google Scholar 

  14. Nicodemus KK, Folsom AR. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care. 2001;24:1192–7.

    Article  PubMed  CAS  Google Scholar 

  15. Holmberg AH, Nilsson PM, Nilsson JA, Akesson K. The association between hyperglycemia and fracture risk in middle age. A prospective, population-based study of 22, 444 men and 10, 902 women. J Clin Endocrinol Metab. 2008;93:815–22.

    Article  PubMed  CAS  Google Scholar 

  16. Leslie WD, Lix LM, Prior HJ, Derksen S, Metge C, O’Neil J. Biphasic fracture risk in diabetes: a population-based study. Bone. 2007;40:1595–601.

    Article  PubMed  Google Scholar 

  17. Reid IR. Relationships between fat and bone. Osteoporos Int. 2008;19:595–606.

    Article  PubMed  CAS  Google Scholar 

  18. Schwartz AV, Hillier TA, Sellmeyer DE, Resnick HE, Gregg E, Ensrud KE, et al. Older women with diabetes have a higher risk of falls: a prospective study. Diabetes Care. 2002;25:1749–54.

    Article  PubMed  Google Scholar 

  19. Loke YK, Singh S, Furberg CD. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ. 2009;180:32–9.

    PubMed  Google Scholar 

  20. Bauer DC, Browner WS, Cauley JA, Orwoll ES, Scott JC, Black DM, et al. Factors associated with appendicular bone mass in older women. The Study of Osteoporotic Fractures Research Group. Ann Intern Med. 1993;118:657–65.

    PubMed  CAS  Google Scholar 

  21. Orwoll ES, Bauer DC, Vogt TM, Fox KM. Axial bone mass in older women. Study of Osteoporotic Fractures Research Group. Ann Intern Med. 1996;124:187–96.

    PubMed  CAS  Google Scholar 

  22. Strotmeyer ES, Cauley JA, Schwartz AV, Nevitt MC, Resnick HE, Zmuda JM, et al. Diabetes is associated independently of body composition with BMD and bone volume in older white and black men and women: The Health, Aging, and Body Composition Study. J Bone Miner Res. 2004;19:1084–91.

    Article  PubMed  Google Scholar 

  23. Schwartz AV, Sellmeyer DE, Strotmeyer ES, Tylavsky FA, Feingold KR, Resnick HE, et al. Diabetes and bone loss at the hip in older black and white adults. J Bone Miner Res. 2005;20:596–603.

    Article  PubMed  Google Scholar 

  24. Keegan TH, Schwartz AV, Bauer DC, Sellmeyer DE, Kelsey JL. Effect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women: the fracture intervention trial. Diabetes Care. 2004;27:1547–53.

    Article  PubMed  CAS  Google Scholar 

  25. Cauley JA, Lui LY, Barnes D, Ensrud KE, Zmuda JM, Hillier TA, et al. Successful skeletal aging: a marker of low fracture risk and longevity. The Study of Osteoporotic Fractures (SOF). J Bone Miner Res. 2009;24:134–43.

    Article  PubMed  Google Scholar 

  26. Strotmeyer ES, Boudreau RM, Marshall LM, Schwartz AV, Bauer DC, Barrett-Connor E, et al. Higher bone mineral density loss in older men with diabetes: The Osteoporotic Fractures in Men Study. In: ASBMR 30th Annual Meeting, 2008. Montreal, Canada: ASBMR; 2008.

  27. Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM. Bone loss and bone turnover in diabetes. Diabetes. 1995;44:775–82.

    Article  PubMed  CAS  Google Scholar 

  28. Berger C, Langsetmo L, Joseph L, Hanley DA, Davison S, Josse RG, et al. Association between change in bone mineral density (BMD) and fragility fracture in women and men. J Bone Miner Res. 2009;24:361–70.

    Article  PubMed  Google Scholar 

  29. Register TC, Lenchik L, Hsu FC, Lohman KK, Freedman BI, Bowden DW, et al. Type 2 diabetes is not independently associated with spinal trabecular volumetric bone mineral density measured by QCT in the Diabetes Heart Study. Bone. 2006;39:628–33.

    Article  PubMed  CAS  Google Scholar 

  30. Melton LJ III, Riggs BL, Leibson CL, Achenbach SJ, Camp JJ, Bouxsein ML, et al. A bone structural basis for fracture risk in diabetes. J Clin Endocrinol Metab. 2008;93:4804–9.

    Article  PubMed  CAS  Google Scholar 

  31. Petit M, Paudel ML, Taylor B, Hughes J, Strotmeyer ES, Schwartz AV, et al. Bone mass and strength in older men with type II diabetes: The Osteoporotic Fractures in Men Study. J Bone Miner Res. 2009; in press.

  32. Burghardt AJ, Dais KA, Masharani U, Link TM, Majumdar S. In vivo quantification of intra-cortical porosity in human cortical bone using HR-pQCT in patients with type II diabetes. In: ASBMR 30th Annual Meeting, 2008. Montreal, Canada: ASBMR; 2008.

  33. Ural A, Vashishth D. Effects of intracortical porosity on fracture toughness in aging human bone: a microCT-based cohesive finite element study. J Biomech Eng. 2007;129:625–31.

    Article  PubMed  Google Scholar 

  34. Lauretani F, Bandinelli S, Griswold ME, Maggio M, Semba R, Guralnik JM, et al. Longitudinal changes in BMD and bone geometry in a population-based study. J Bone Miner Res. 2008;23:400–8.

    Article  PubMed  Google Scholar 

  35. Kelin M, Frost HM. The numbers of bone resorption and formation foci in rib. Henry Ford Hosp Med Bull. 1964;12:527–36.

    Google Scholar 

  36. Pei Y, Hercz G, Greenwood C, Segre G, Manuel A, Saiphoo C, et al. Renal osteodystrophy in diabetic patients. Kidney Int. 1993;44:159–64.

    Article  PubMed  CAS  Google Scholar 

  37. Carnevale V, Romagnoli E, D’Erasmo E. Skeletal involvement in patients with diabetes mellitus. Diabetes Metab Res Rev. 2004;20:196–204.

    Article  PubMed  Google Scholar 

  38. Suzuki K, Kurose T, Takizawa M, Maruyama M, Ushikawa K, Kikuyama M, et al. Osteoclastic function is accelerated in male patients with type 2 diabetes mellitus: the preventive role of osteoclastogenesis inhibitory factor/osteoprotegerin (OCIF/OPG) on the decrease of bone mineral density. Diabetes Res Clin Pract. 2005;68:117–25.

    Article  PubMed  CAS  Google Scholar 

  39. Gerdhem P, Isaksson A, Akesson K, Obrant KJ. Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int. 2005;16:1506–12.

    Article  PubMed  CAS  Google Scholar 

  40. Dobnig H, Piswanger-Solkner JC, Roth M, Obermayer-Pietsch B, Tiran A, Strele A, et al. Type 2 diabetes mellitus in nursing home patients: effects on bone turnover, bone mass, and fracture risk. J Clin Endocrinol Metab. 2006;91:3355–63.

    Article  PubMed  CAS  Google Scholar 

  41. Achemlal L, Tellal S, Rkiouak F, Nouijai A, Bezza A, Derouiche el M, et al. Bone metabolism in male patients with type 2 diabetes. Clin Rheumatol. 2005;24:493–6.

    Article  PubMed  Google Scholar 

  42. Seeman E, Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354:2250–61.

    Article  PubMed  CAS  Google Scholar 

  43. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–69.

    Article  PubMed  CAS  Google Scholar 

  44. Goh SY, Cooper ME. Clinical review: the role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab. 2008;93:1143–52.

    Article  PubMed  CAS  Google Scholar 

  45. Odetti P, Rossi S, Monacelli F, Poggi A, Cirnigliaro M, Federici M, et al. Advanced glycation end products and bone loss during aging. Ann N Y Acad Sci. 2005;1043:710–7.

    Article  PubMed  CAS  Google Scholar 

  46. Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(3):1013–9.

    Article  PubMed  CAS  Google Scholar 

  47. Shiraki M, Kuroda T, Tanaka S, Saito M, Fukunaga M, Nakamura T. Nonenzymatic collagen cross-links induced by glycoxidation (pentosidine) predicts vertebral fractures. J Bone Miner Metab. 2008;26:93–100.

    Article  PubMed  CAS  Google Scholar 

  48. Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, Feingold KR, et al. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab. 2009. doi:10.1210/jc.2008-2498.

  49. Wang X, Shen X, Li X, Agrawal CM. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31:1–7.

    Article  PubMed  Google Scholar 

  50. Viguet-Carrin S, Roux JP, Arlot ME, Merabet Z, Leeming DJ, Byrjalsen I, et al. Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. Bone. 2006;39:1073–9.

    Article  PubMed  CAS  Google Scholar 

  51. Hernandez CJ, Tang SY, Baumbach BM, Hwu PB, Sakkee AN, van der Ham F, et al. Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone. 2005;37:825–32.

    Article  PubMed  CAS  Google Scholar 

  52. Saito M, Fujii K, Marumo K. Degree of mineralization-related collagen crosslinking in the femoral neck cancellous bone in cases of hip fracture and controls. Calcif Tissue Int. 2006;79:160–8.

    Article  PubMed  CAS  Google Scholar 

  53. Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001;28:195–201.

    Article  PubMed  CAS  Google Scholar 

  54. Tang SY, Zeenath U, Vashishth D. Effects of non-enzymatic glycation on cancellous bone fragility. Bone. 2007;40:1144–51.

    Article  PubMed  CAS  Google Scholar 

  55. Saito M, Fujii K, Mori Y, Marumo K. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int. 2006;17:1514–23.

    Article  PubMed  CAS  Google Scholar 

  56. Hein G, Wiegand R, Lehmann G, Stein G, Franke S. Advanced glycation end-products pentosidine and N{epsilon}-carboxymethyllysine are elevated in serum of patients with osteoporosis. Rheumatology. 2003;42:1242–6.

    Article  PubMed  CAS  Google Scholar 

  57. Miyata T, Notoya K, Yoshida K, Horie K, Maeda K, Kurokawa K, et al. Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol. 1997;8:260–70.

    PubMed  CAS  Google Scholar 

  58. Valcourt U, Merle B, Gineyts E, Viguet-Carrin S, Delmas PD, Garnero P. Non-enzymatic glycations of bone collagen modify osteoclastic activity and differentiation. J Biol Chem. 2006;282:5691–5703.

    Google Scholar 

  59. McCarthy AD, Uemura T, Etcheverry SB, Cortizo AM. Advanced glycation endproducts interfere with integrin-mediated osteoblastic attachment to a type-I collagen matrix. Int J Biochem Cell Biol. 2004;36:840–8.

    Article  PubMed  CAS  Google Scholar 

  60. Franke S, Siggelkow H, Wolf G, Hein G. Advanced glycation endproducts influence the mRNA expression of RAGE, RANKL and various osteoblastic genes in human osteoblasts. Arch Physiol Biochem. 2007;113:154–61.

    Article  PubMed  CAS  Google Scholar 

  61. Ogawa N, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T. The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3–E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res. 2007;39:871–5.

    Article  PubMed  CAS  Google Scholar 

  62. Hein G, Weiss C, Lehmann G, Niwa T, Stein G, Franke S. Advanced glycation end product modification of bone proteins and bone remodelling: hypothesis and preliminary immunohistochemical findings. Ann Rheum Dis. 2006;65:101–4.

    Article  PubMed  CAS  Google Scholar 

  63. Thrailkill KM, Lumpkin CK Jr, Bunn RC, Kemp SF, Fowlkes JL. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab. 2005;289:E735–45.

    Article  PubMed  CAS  Google Scholar 

  64. Manolagas SC, Almeida M. Gone with the Wnts: {beta}-catenin, TCF, FOXO, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol. 2007;21:2605–14.

    Article  PubMed  CAS  Google Scholar 

  65. Hamada Y, Fujii H, Fukagawa M. Role of oxidative stress in diabetic bone disorder. Bone. 2009. doi:10.1016/j.bone.2009.02.004.

  66. Forsen L, Meyer HE, Midthjell K, Edna TH. Diabetes mellitus and the incidence of hip fracture: results from the Nord-Trondelag Health Survey. Diabetologia. 1999;42:920–5.

    Article  PubMed  CAS  Google Scholar 

  67. Ivers RQ, Cumming RG, Mitchell P, Peduto AJ. Diabetes and risk of fracture: The Blue Mountains Eye Study. Diabetes Care. 2001;24:1198–203.

    Article  PubMed  CAS  Google Scholar 

  68. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S, Sugimoto T. Combination of obesity with hyperglycemia is a risk factor for the presence of vertebral fractures in type 2 diabetic men. Calcif Tissue Int. 2008;83:324–31.

    Article  PubMed  CAS  Google Scholar 

  69. Gregorio F, Cristallini S, Santeusanio F, Filipponi P, Fumelli P. Osteopenia associated with non-insulin-dependent diabetes mellitus: what are the causes? Diabetes Res Clin Pract. 1994;23:43–54.

    Article  PubMed  CAS  Google Scholar 

  70. Sayinalp S, Gedik O, Koray Z. Increasing serum osteocalcin after glycemic control in diabetic men. Calcif Tissue Int. 1995;57:422–5.

    Article  PubMed  CAS  Google Scholar 

  71. Hosoda H, Fukui M, Nakayama I, Asano M, Kadono M, Hasegawa G, et al. Bone mass and bone resorption in postmenopausal women with type 2 diabetes mellitus. Metabolism. 2008;57:940–5.

    Article  PubMed  CAS  Google Scholar 

  72. Okazaki R, Totsuka Y, Hamano K, Ajima M, Miura M, Hirota Y, et al. Metabolic improvement of poorly controlled noninsulin-dependent diabetes mellitus decreases bone turnover. J Clin Endocrinol Metab. 1997;82:2915–20.

    Article  PubMed  CAS  Google Scholar 

  73. Rosato MT, Schneider SH, Shapses SA. Bone turnover and insulin-like growth factor I levels increase after improved glycemic control in noninsulin-dependent diabetes mellitus. Calcif Tissue Int. 1998;63:107–11.

    Article  PubMed  CAS  Google Scholar 

  74. Capoglu I, Ozkan A, Ozkan B, Umudum Z. Bone turnover markers in patients with type 2 diabetes and their correlation with glycosylated haemoglobin levels. J Int Med Res. 2008;36:1392–8.

    PubMed  CAS  Google Scholar 

  75. Zhang L, Liu Y, Wang D, Zhao X, Qiu Z, Ji H, et al. Bone biomechanical and histomorphometrical investment in type 2 diabetic Goto-Kakizaki rats. Acta Diabetol. 2009;46(2):119–26.

    Article  PubMed  Google Scholar 

  76. Kawashima Y, Fritton JC, Yakar S, Epstein S, Schaffler MB, Jepsen KJ, et al. Type 2 diabetic mice demonstrate slender long bones with increased fragility secondary to increased osteoclastogenesis. Bone. 2009;44(4):648–55.

    Article  PubMed  Google Scholar 

  77. Reinwald S, Peterson RG, Allen MR, Burr DB. Skeletal changes associated with the onset of type 2 diabetes in the ZDF and ZDSD rodent models. Am J Physiol Endocrinol Metab. 2009;296(4):E765–E774.

    Google Scholar 

  78. Prisby R, Swift J, Bloomfield S, Hogan H, Delp M. Altered bone mass, geometry and mechanical properties during the development and progression of type 2 diabetes in the Zucker diabetic fatty rat. J Endocrinol. 2008;199(3):379–388.

    Google Scholar 

  79. Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone. 2008;42:606–15.

    Article  PubMed  CAS  Google Scholar 

  80. Villarino ME, Sanchez LM, Bozal CB, Ubios AM. Influence of short-term diabetes on osteocytic lacunae of alveolar bone. A histomorphometric study. Acta Odontol Latinoam. 2006;19:23–8.

    PubMed  Google Scholar 

  81. Balint E, Szabo P, Marshall CF, Sprague SM. Glucose-induced inhibition of in vitro bone mineralization. Bone. 2001;28:21–8.

    Article  PubMed  CAS  Google Scholar 

  82. Botolin S, McCabe LR. Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem. 2006;99:411–24.

    Article  PubMed  CAS  Google Scholar 

  83. Gopalakrishnan V, Vignesh RC, Arunakaran J, Aruldhas MM, Srinivasan N. Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages. Biochem Cell Biol. 2006;84:93–101.

    Article  PubMed  CAS  Google Scholar 

  84. Lipscombe LL, Jamal SA, Booth GL, Hawker GA. The risk of hip fractures in older individuals with diabetes: a population-based study. Diabetes Care. 2007;30:835–41.

    Article  PubMed  Google Scholar 

  85. Volpato S, Leveille SG, Blaum C, Fried LP, Guralnik JM. Risk factors for falls in older disabled women with diabetes: the women’s health and aging study. J Gerontol A Biol Sci Med Sci. 2005;60:1539–45.

    PubMed  Google Scholar 

  86. Schwartz AV, Vittinghoff E, Sellmeyer DE, Feingold KR, de Rekeneire N, Strotmeyer ES, et al. Diabetes-related complications, glycemic control, and falls in older adults. Diabetes Care. 2008;31:391–6.

    Article  PubMed  Google Scholar 

  87. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355:2427–43.

    Article  PubMed  CAS  Google Scholar 

  88. Kahn SE, Zinman B, Lachin JM, Haffner SM, Herman WH, Holman RR, et al. Rosiglitazone associated fractures in type 2 diabetes: an analysis from ADOPT. Diabetes Care. 2008;31:845–51.

    Article  PubMed  CAS  Google Scholar 

  89. Takeda Pharmaceuticals North America. Observation of an increased incidence of fractures in female patients who received long-term treatment with ACTOS® (pioglitazone HCl) tablets for type 2 diabetes mellitus. Takeda Pharmaceuticals North America, Letter to Health Care Providers, March 2007.

  90. Meier C, Kraenzlin ME, Bodmer M, Jick SS, Jick H, Meier CR. Use of thiazolidinediones and fracture risk. Arch Intern Med. 2008;168:820–5.

    Article  PubMed  CAS  Google Scholar 

  91. Grey A, Bolland M, Gamble G, Wattie D, Horne A, Davidson J, et al. The peroxisome-proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab. 2007;92:1305–10.

    Article  PubMed  CAS  Google Scholar 

  92. Glintborg D, Andersen M, Hagen C, Heickendorff L, Hermann AP. Association of pioglitazone treatment with decreased bone mineral density in obese premenopausal patients with polycystic ovary syndrome: a randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2008;93:1696–701.

    Article  PubMed  CAS  Google Scholar 

  93. Schwartz AV, Sellmeyer DE, Vittinghoff E, Palermo L, Lecka-Czernik B, Feingold KR, et al. Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab. 2006;91:3349–54.

    Article  PubMed  CAS  Google Scholar 

  94. Yaturu S, Bryant B, Jain SK. Thiazolidinediones treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care. 2007;30:1574–6.

    Article  PubMed  CAS  Google Scholar 

  95. Lecka-Czernik B, Suva LJ. Resolving the two “bony” faces of PPAR-gamma. PPAR Res. 2006;2006:27489.

    PubMed  Google Scholar 

  96. Grey A. Skeletal consequences of thiazolidinedione therapy. Osteoporos Int. 2008;19:129–37.

    Article  PubMed  CAS  Google Scholar 

  97. Wan Y, Chong LW, Evans RM. PPAR-gamma regulates osteoclastogenesis in mice. Nat Med. 2007;13:1496–503.

    Article  PubMed  CAS  Google Scholar 

  98. Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, Lecka-Czernik B. Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology. 2007;148:2669–80.

    Article  PubMed  CAS  Google Scholar 

  99. Sottile V, Seuwen K, Kneissel M. Enhanced marrow adipogenesis and bone resorption in estrogen-deprived rats treated with the PPARgamma agonist BRL49653 (rosiglitazone). Calcif Tissue Int. 2004;75:329–37.

    Article  PubMed  CAS  Google Scholar 

  100. Holmberg AH, Johnell O, Nilsson PM, Nilsson JA, Berglund G, Akesson K. Risk factors for hip fractures in a middle-aged population: a study of 33, 000 men and women. Osteoporos Int. 2005;16:2185–94.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann V. Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, A.V. Impact of Diabetes and its Treatment on Bone. Clinic Rev Bone Miner Metab 7, 249–260 (2009). https://doi.org/10.1007/s12018-009-9049-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-009-9049-3

Keywords

Navigation