Skip to main content

Advertisement

Log in

Individual Amino Acid Supplementation Can Improve Energy Metabolism and Decrease ROS Production in Neuronal Cells Overexpressing Alpha-Synuclein

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by alpha-synuclein accumulation and loss of dopaminergic neurons in the substantia nigra (SN) region of the brain. Increased levels of alpha-synuclein have been shown to result in loss of mitochondrial electron transport chain complex I activity leading to increased reactive oxygen species (ROS) production. WT alpha-synuclein was stably overexpressed in human BE(2)-M17 neuroblastoma cells resulting in increased levels of an alpha-synuclein multimer, but no increase in alpha-synuclein monomer levels. Oxygen consumption was decreased by alpha-synuclein overexpression, but ATP levels did not decrease and ROS levels did not increase. Treatment with ferrous sulfate, a ROS generator, resulted in decreased oxygen consumption in both control and alpha-synuclein overexpressing cells. However, this treatment only decreased ATP levels and increased ROS production in the cells overexpressing alpha-synuclein. Similarly, paraquat, another ROS generator, decreased ATP levels in the alpha-synuclein overexpressing cells, but not in the control cells, further demonstrating how alpha-synuclein sensitized the cells to oxidative insult. Proteomic analysis yielded molecular insights into the cellular adaptations to alpha-synuclein overexpression, such as the increased abundance of many mitochondrial proteins. Many amino acids and citric acid cycle intermediates and their ester forms were individually supplemented to the cells with l-serine, l-proline, l-aspartate, or l-glutamine decreasing ROS production in oxidatively stressed alpha-synuclein overexpressing cells, while diethyl oxaloacetate or l-valine supplementation increased ATP levels. These results suggest that dietary supplementation with individual metabolites could yield bioenergetic improvements in PD patients to delay loss of dopaminergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andres, D., Keyser, B. M., Petrali, J., Benton, B., Hubbard, K. S., McNutt, P. M., et al. (2013). Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with trans-retinoic acid. BMC Neuroscience, 14, 49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayton, S., & Lei, P. (2014). Nigral iron elevation is an invariable feature of Parkinson’s disease and is a sufficient cause of neurodegeneration. BioMed Research International, 2014, 581256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balu, D. T., Hoshaw, B. A., Malberg, J. E., Rosenzweig-Lipson, S., Schechter, L. E., & Lucki, I. (2008). Differential regulation of central BDNF protein levels by antidepressant and non-antidepressant drug treatments. Brain Research, 1211, 37–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels, T., Choi, J. G., & Selkoe, D. J. (2011). Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature, 477(7362), 107–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beal, M. F. (2007). Mitochondria and neurodegeneration. Novartis Foundation Symposium, 287, 183–192. (discussion 192–186).

    Article  CAS  PubMed  Google Scholar 

  • Binukumar, B. K., Bal, A., Kandimalla, R. J., & Gill, K. D. (2010). Nigrostriatal neuronal death following chronic dichlorvos exposure: Crosstalk between mitochondrial impairments, alpha synuclein aggregation, oxidative damage and behavioral changes. Molecular Brain, 3, 35.

    CAS  PubMed  Google Scholar 

  • Bisaglia, M., Greggio, E., Maric, D., Miller, D. W., Cookson, M. R., & Bubacco, L. (2010). Alpha-synuclein overexpression increases dopamine toxicity in BE2-M17 cells. BMC Neuroscience, 11, 41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bourdenx, M., Bezard, E., & Dehay, B. (2014). Lysosomes and alpha-synuclein form a dangerous duet leading to neuronal cell death. Frontiers in Neuroanatomy, 8, 83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bromme, H. J., Zuhlke, L., Silber, R. E., & Simm, A. (2008). DCFH2 interactions with hydroxyl radicals and other oxidants—Influence of organic solvents. Experimental Gerontology, 43(7), 638–644.

    Article  PubMed  CAS  Google Scholar 

  • Caioli, S., Candelotti, E., Pedersen, J. Z., Saba, L., Antonini, A., Incerpi, S., et al. (2016). Baicalein reverts l-valine-induced persistent sodium current up-modulation in primary cortical neurons. Biochimica et Biophysica Acta, 1862(4), 566–575.

    Article  CAS  PubMed  Google Scholar 

  • Cannon, J. R., Geghman, K. D., Tapias, V., Sew, T., Dail, M. K., Li, C., et al. (2013). Expression of human E46K-mutated alpha-synuclein in BAC-transgenic rats replicates early-stage Parkinson’s disease features and enhances vulnerability to mitochondrial impairment. Experimental Neurology, 240, 44–56.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, K. M., De-Laurenzi, V., Melino, G., & Cohen, P. (1993). Human neuroblastoma cells express a novel metallo-endopeptidase activity able to inactivate atrial natriuretic factor: Inhibition during retinoic acid-induced differentiation. Brazilian Journal of Medical and Biological Research, 26(11), 1181–1186.

    CAS  PubMed  Google Scholar 

  • Caudal, D., Alvarsson, A., Bjorklund, A., & Svenningsson, P. (2015). Depressive-like phenotype induced by AAV-mediated overexpression of human alpha-synuclein in midbrain dopaminergic neurons. Experimental Neurology, 273, 243–252.

    Article  CAS  PubMed  Google Scholar 

  • Chaput, D., Kirouac, L. H., Bell-Temin, H., Stevens, S. M., Jr., & Padmanabhan, J. (2012). SILAC-based proteomic analysis to investigate the impact of amyloid precursor protein expression in neuronal-like B103 cells. Electrophoresis, 33(24), 3728–3737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee, S., Mizar, P., Cassel, R., Neidl, R., Selvi, B. R., Mohankrishna, D. V., et al. (2013). A novel activator of CBP/p300 acetyltransferases promotes neurogenesis and extends memory duration in adult mice. Journal of Neuroscience, 33(26), 10698–10712.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., Xie, Z., Turkson, S., & Zhuang, X. (2015). A53T human alpha-synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. Journal of Neuroscience, 35(3), 890–905.

    Article  PubMed  CAS  Google Scholar 

  • Chiba-Falek, O., & Nussbaum, R. L. (2001). Effect of allelic variation at the NACP-Rep1 repeat upstream of the alpha-synuclein gene (SNCA) on transcription in a cell culture luciferase reporter system. Human Molecular Genetics, 10(26), 3101–3109.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, G., Farooqui, R., & Kesler, N. (1997). Parkinson disease: A new link between monoamine oxidase and mitochondrial electron flow. Proceedings of the National Academy of Sciences, 94(10), 4890–4894.

    Article  CAS  Google Scholar 

  • Cole, N. B., Murphy, D. D., Lebowitz, J., Di Noto, L., Levine, R. L., & Nussbaum, R. L. (2005). Metal-catalyzed oxidation of alpha-synuclein: Helping to define the relationship between oligomers, protofibrils, and filaments. Journal of Biological Chemistry, 280(10), 9678–9690.

    Article  CAS  PubMed  Google Scholar 

  • Dalfo, E., Portero-Otin, M., Ayala, V., Martinez, A., Pamplona, R., & Ferrer, I. (2005). Evidence of oxidative stress in the neocortex in incidental Lewy body disease. Journal of Neuropathology and Experimental Neurology, 64(9), 816–830.

    Article  CAS  PubMed  Google Scholar 

  • De Zutter, G. S., & Davis, R. J. (2001). Pro-apoptotic gene expression mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Proceedings of the National Academy of Sciences, 98(11), 6168–6173.

    Article  Google Scholar 

  • Denton, R. M., Rutter, G. A., Midgley, P. J., & McCormack, J. G. (1988). Effects of Ca2+ on the activities of the calcium-sensitive dehydrogenases within the mitochondria of mammalian tissues. Journal of Cardiovascular Pharmacology, 12(Suppl 5), S69–S72.

    Article  CAS  PubMed  Google Scholar 

  • Dettmer, U., Newman, A. J., Soldner, F., Luth, E. S., Kim, N. C., von Saucken, V. E., et al. (2015). Parkinson-causing alpha-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nature Communications, 6, 7314.

    Article  PubMed  PubMed Central  Google Scholar 

  • Devi, L., Raghavendran, V., Prabhu, B. M., Avadhani, N. G., & Anandatheerthavarada, H. K. (2008). Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. Journal of Biological Chemistry, 283(14), 9089–9100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Maio, R., Barrett, P. J., Hoffman, E. K., Barrett, C. W., Zharikov, A., Borah, A., et al. (2016). Alpha-synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Science Translational Medicine, 8(342), 342–378.

    Google Scholar 

  • Dickey, A. S., & Strack, S. (2011). PKA/AKAP1 and PP2A/Bbeta2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. Journal of Neuroscience, 31(44), 15716–15726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edmondson, D. E. (2014). Hydrogen peroxide produced by mitochondrial monoamine oxidase catalysis: Biological implications. Current Pharmaceutical Design, 20(2), 155–160.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, C., Canfield, J., Copes, N., Brito, A., Rehan, M., Lipps, D., et al. (2015). Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans. BMC Genetics, 16, 8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elkon, H., Don, J., Melamed, E., Ziv, I., Shirvan, A., & Offen, D. (2002). Mutant and wild-type alpha-synuclein interact with mitochondrial cytochrome C oxidase. Journal of Molecular Neuroscience, 18(3), 229–238.

    Article  CAS  PubMed  Google Scholar 

  • Eschbach, J., von Einem, B., Muller, K., Bayer, H., Scheffold, A., Morrison, B. E., et al. (2015). Mutual exacerbation of peroxisome proliferator-activated receptor gamma coactivator 1alpha deregulation and alpha-synuclein oligomerization. Annals of Neurology, 77(1), 15–32.

    Article  CAS  PubMed  Google Scholar 

  • Filograna, R., Civiero, L., Ferrari, V., Codolo, G., Greggio, E., Bubacco, L., et al. (2015). Analysis of the catecholaminergic phenotype in human SH-SY5Y and BE(2)-M17 neuroblastoma cell lines upon differentiation. PLoS ONE, 10(8), e0136769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fitzgerald, J. C., Ufer, C., De Girolamo, L. A., Kuhn, H., & Billett, E. E. (2007). Monoamine oxidase-A modulates apoptotic cell death induced by staurosporine in human neuroblastoma cells. Journal of Neurochemistry, 103(6), 2189–2199.

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald, J. C., Ugun-Klusek, A., Allen, G., De Girolamo, L. A., Hargreaves, I., Ufer, C., et al. (2014). Monoamine oxidase-A knockdown in human neuroblastoma cells reveals protection against mitochondrial toxins. The FASEB Journal, 28(1), 218–229.

    Article  CAS  PubMed  Google Scholar 

  • Fong, C. S., Wu, R. M., Shieh, J. C., Chao, Y. T., Fu, Y. P., Kuao, C. L., et al. (2007). Pesticide exposure on southwestern Taiwanese with MnSOD and NQO1 polymorphisms is associated with increased risk of Parkinson’s disease. Clinica Chimica Acta, 378(1–2), 136–141.

    Article  CAS  Google Scholar 

  • Fowler, C. J., Wiberg, A., Oreland, L., Marcusson, J., & Winblad, B. (1980). The effect of age on the activity and molecular properties of human brain monoamine oxidase. Journal of Neural Transmission, 49(1–2), 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Frohlich, C., Zschiebsch, K., Groger, V., Paarmann, K., Steffen, J., Thurm, C., et al. (2016). Activation of mitochondrial complex II-dependent respiration is beneficial for alpha-synucleinopathies. Molecular Neurobiology, 53(7), 4728–4744.

    Article  PubMed  CAS  Google Scholar 

  • Fry, M., & Green, D. E. (1981). Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. Journal of Biological Chemistry, 256(4), 1874–1880.

    CAS  PubMed  Google Scholar 

  • Garcia de Yebenes, J., Yebenes, J., & Mena, M. A. (2000). Neurotrophic factors in neurodegenerative disorders: Model of Parkinson’s disease. Neurotoxicity Research, 2(2–3), 115–137.

    Article  CAS  PubMed  Google Scholar 

  • Gegg, M. E., & Schapira, A. H. (2011). PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2: Implications for Parkinson disease pathogenesis. Autophagy, 7(2), 243–245.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson, G. E., Kingsbury, A. E., Xu, H., Lindsay, J. G., Daniel, S., Foster, O. J., et al. (2003). Deficits in a tricarboxylic acid cycle enzyme in brains from patients with Parkinson’s disease. Neurochemistry International, 43(2), 129–135.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, D. S., Sullivan, P., Holmes, C., Miller, G. W., Alter, S., Strong, R., et al. (2013). Determinants of buildup of the toxic dopamine metabolite DOPAL in Parkinson’s disease. Journal of Neurochemistry, 126(5), 591–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould, N., Mor, D. E., Lightfoot, R., Malkus, K., Giasson, B., & Ischiropoulos, H. (2014). Evidence of native alpha-synuclein conformers in the human brain. Journal of Biological Chemistry, 289(11), 7929–7934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grishina, E. V., Khaustova, Y. V., Vasilieva, A. A., & Mayevsky, E. I. (2015). Age-related peculiarities of succinate effect on induced lipid peroxidation in rat liver mitochondria. Biofizika, 60(4), 708–715.

    CAS  PubMed  Google Scholar 

  • Hanus, L., Shohami, E., Bab, I., & Mechoulam, R. (2014). N-Acyl amino acids and their impact on biological processes. BioFactors, 40(4), 381–388.

    Article  CAS  PubMed  Google Scholar 

  • Hassel, B., Brathe, A., & Petersen, D. (2002). Cerebral dicarboxylate transport and metabolism studied with isotopically labelled fumarate, malate and malonate. Journal of Neurochemistry, 82(2), 410–419.

    Article  CAS  PubMed  Google Scholar 

  • Hauptmann, N., Grimsby, J., Shih, J. C., & Cadenas, E. (1996). The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA. Archives of Biochemistry and Biophysics, 335(2), 295–304.

    Article  CAS  PubMed  Google Scholar 

  • He, Q., Song, N., Xu, H., Wang, R., Xie, J., & Jiang, H. (2011). Alpha-synuclein aggregation is involved in the toxicity induced by ferric iron to SK-N-SH neuroblastoma cells. J Neural Transm, 118(3), 397–406.

    Article  CAS  PubMed  Google Scholar 

  • Hunt, J. B., Jr., Nash, K. R., Placides, D., Moran, P., Selenica, M. L., Abuqalbeen, F., et al. (2015). Sustained arginase 1 expression modulates pathological tau deposits in a mouse model of tauopathy. Journal of Neuroscience, 35(44), 14842–14860.

    Article  CAS  PubMed  Google Scholar 

  • Jeninga, E. H., Schoonjans, K., & Auwerx, J. (2010). Reversible acetylation of PGC-1: Connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene, 29(33), 4617–4624.

    Article  CAS  PubMed  Google Scholar 

  • Jinsmaa, Y., Sullivan, P., Gross, D., Cooney, A., Sharabi, Y., & Goldstein, D. S. (2014). Divalent metal ions enhance DOPAL-induced oligomerization of alpha-synuclein. Neuroscience Letters, 569, 27–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama, S., & Mine, Y. (2007). Antioxidative activity of amino acids on tissue oxidative stress in human intestinal epithelial cell model. Journal of Agriculture and Food Chemistry, 55(21), 8458–8464.

    Article  CAS  Google Scholar 

  • Keane, P. C., Kurzawa, M., Blain, P. G., & Morris, C. M. (2011). Mitochondrial dysfunction in Parkinson’s disease. Parkinsons Disease, 2011, 716871.

    CAS  Google Scholar 

  • Keeney, P. M., Xie, J., Capaldi, R. A., & Bennett, J. P., Jr. (2006). Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. Journal of Neuroscience, 26(19), 5256–5264.

    Article  CAS  PubMed  Google Scholar 

  • Ko, L., Mehta, N. D., Farrer, M., Easson, C., Hussey, J., Yen, S., et al. (2000). Sensitization of neuronal cells to oxidative stress with mutated human alpha-synuclein. Journal of Neurochemistry, 75(6), 2546–2554.

    Article  CAS  PubMed  Google Scholar 

  • Kohno, R., Sawada, H., Kawamoto, Y., Uemura, K., Shibasaki, H., & Shimohama, S. (2004). BDNF is induced by wild-type alpha-synuclein but not by the two mutants, A30P or A53T, in glioma cell line. Biochemical and Biophysical Research Communications, 318(1), 113–118.

    Article  CAS  PubMed  Google Scholar 

  • Koller, W. C. (1986). Paraquat and Parkinson’s disease. Neurology, 36(8), 1147.

    Article  CAS  PubMed  Google Scholar 

  • Kontopoulos, E., Parvin, J. D., & Feany, M. B. (2006). Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Human Molecular Genetics, 15(20), 3012–3023.

    Article  CAS  PubMed  Google Scholar 

  • Kroe, D., Kinney, T. D., Kaufman, N., & Klavins, J. V. (1963). The influence of amino acids on iron absorption. Blood, 21, 546–552.

    CAS  PubMed  Google Scholar 

  • Kumar, M. J., Nicholls, D. G., & Andersen, J. K. (2003). Oxidative alpha-ketoglutarate dehydrogenase inhibition via subtle elevations in monoamine oxidase B levels results in loss of spare respiratory capacity: Implications for Parkinson’s disease. Journal of Biological Chemistry, 278(47), 46432–46439.

    Article  CAS  PubMed  Google Scholar 

  • Levin, J., Hogen, T., Hillmer, A. S., Bader, B., Schmidt, F., Kamp, F., et al. (2011). Generation of ferric iron links oxidative stress to alpha-synuclein oligomer formation. Journal of Parkinson’s Disease, 1(2), 205–216.

    CAS  PubMed  Google Scholar 

  • Li, J., Uversky, V. N., & Fink, A. L. (2001). Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry, 40(38), 11604–11613.

    Article  CAS  PubMed  Google Scholar 

  • Li, W. W., Yang, R., Guo, J. C., Ren, H. M., Zha, X. L., Cheng, J. S., et al. (2007). Localization of alpha-synuclein to mitochondria within midbrain of mice. NeuroReport, 18(15), 1543–1546.

    Article  CAS  PubMed  Google Scholar 

  • Liu, L., Peritore, C., Ginsberg, J., Shih, J., Arun, S., & Donmez, G. (2015). Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s disease. Behavioural Brain Research, 281, 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Ludtmann, M. H., Angelova, P. R., Ninkina, N. N., Gandhi, S., Buchman, V. L., & Abramov, A. Y. (2016). Monomeric alpha-synuclein exerts a physiological role on brain ATP synthase. Journal of Neuroscience, 36(41), 10510–10521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luth, E. S., Bartels, T., Dettmer, U., Kim, N. C., & Selkoe, D. J. (2015). Purification of alpha-synuclein from human brain reveals an instability of endogenous multimers as the protein approaches purity. Biochemistry, 54(2), 279–292.

    Article  CAS  PubMed  Google Scholar 

  • Luth, E. S., Stavrovskaya, I. G., Bartels, T., Kristal, B. S., & Selkoe, D. J. (2014). Soluble, prefibrillar alpha-synuclein oligomers promote complex I-dependent, Ca2+-induced mitochondrial dysfunction. Journal of Biological Chemistry, 289(31), 21490–21507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mallajosyula, J. K., Kaur, D., Chinta, S. J., Rajagopalan, S., Rane, A., Nicholls, D. G., et al. (2008). MAO-B elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS ONE, 3(2), e1616.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maraganore, D. M., de Andrade, M., Elbaz, A., Farrer, M. J., Ioannidis, J. P., Kruger, R., et al. (2006). Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease. JAMA, 296(6), 661–670.

    Article  CAS  PubMed  Google Scholar 

  • Markham, A., Bains, R., Franklin, P., & Spedding, M. (2014). Changes in mitochondrial function are pivotal in neurodegenerative and psychiatric disorders: How important is BDNF? British Journal of Pharmacology, 171(8), 2206–2229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markham, A., Cameron, I., Franklin, P., & Spedding, M. (2004). BDNF increases rat brain mitochondrial respiratory coupling at complex I, but not complex II. European Journal of Neuroscience, 20(5), 1189–1196.

    Article  CAS  PubMed  Google Scholar 

  • Martin, L. J., Pan, Y., Price, A. C., Sterling, W., Copeland, N. G., Jenkins, N. A., et al. (2006). Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. Journal of Neuroscience, 26(1), 41–50.

    Article  CAS  PubMed  Google Scholar 

  • Martin, F. L., Williamson, S. J., Paleologou, K. E., Hewitt, R., El-Agnaf, O. M., & Allsop, D. (2003). Fe(II)-induced DNA damage in alpha-synuclein-transfected human dopaminergic BE(2)-M17 neuroblastoma cells: Detection by the Comet assay. Journal of Neurochemistry, 87(3), 620–630.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, T. N., & Greenamyre, J. T. (2012). Toxin models of mitochondrial dysfunction in Parkinson’s disease. Antioxidants & Redox Signaling, 16(9), 920–934.

    Article  CAS  Google Scholar 

  • Marttila, R. J., Lorentz, H., & Rinne, U. K. (1988). Oxygen toxicity protecting enzymes in Parkinson’s disease. Increase of superoxide dismutase-like activity in the substantia nigra and basal nucleus. Journal of the Neurological Sciences, 86(2–3), 321–331.

    Article  CAS  PubMed  Google Scholar 

  • Mason, S. (2017). Lactate shuttles in neuroenergetics—Homeostasis, allostasis and beyond. Frontiers in Neuroscience, 11, 43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mena, N. P., Urrutia, P. J., Lourido, F., Carrasco, C. M., & Nunez, M. T. (2015). Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion, 21, 92–105.

    Article  CAS  PubMed  Google Scholar 

  • Mogi, M., Togari, A., Kondo, T., Mizuno, Y., Komure, O., Kuno, S., et al. (1999). Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neuroscience Letters, 270(1), 45–48.

    Article  CAS  PubMed  Google Scholar 

  • Murer, M. G., Yan, Q., & Raisman-Vozari, R. (2001). Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Progress in Neurobiology, 63(1), 71–124.

    Article  CAS  PubMed  Google Scholar 

  • Musgrove, R. E., King, A. E., & Dickson, T. C. (2011). Neuroprotective upregulation of endogenous alpha-synuclein precedes ubiquitination in cultured dopaminergic neurons. Neurotoxicity Research, 19(4), 592–602.

    Article  CAS  PubMed  Google Scholar 

  • Nalls, M. A., Plagnol, V., Hernandez, D. G., Sharma, M., Sheerin, U. M., Saad, M., et al. (2011). Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet, 377(9766), 641–649.

    Article  PubMed  CAS  Google Scholar 

  • Negida, A., Menshawy, A., El Ashal, G., Elfouly, Y., Hani, Y., Hegazy, Y., et al. (2016). Coenzyme Q10 for patients with Parkinson’s disease: A systematic review and meta-analysis. CNS & Neurological Disorders: Drug Targets, 15(1), 45–53.

    Article  CAS  Google Scholar 

  • Olmos, Y., Valle, I., Borniquel, S., Tierrez, A., Soria, E., Lamas, S., et al. (2009). Mutual dependence of Foxo3a and PGC-1alpha in the induction of oxidative stress genes. Journal of Biological Chemistry, 284(21), 14476–14484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrerova-Golts, N., Petrucelli, L., Hardy, J., Lee, J. M., Farer, M., & Wolozin, B. (2000). The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. Journal of Neuroscience, 20(16), 6048–6054.

    CAS  PubMed  Google Scholar 

  • Pacheco, C. R., Morales, C. N., Ramirez, A. E., Munoz, F. J., Gallegos, S. S., Caviedes, P. A., et al. (2015). Extracellular alpha-synuclein alters synaptic transmission in brain neurons by perforating the neuronal plasma membrane. Journal of Neurochemistry, 132(6), 731–741.

    Article  CAS  PubMed  Google Scholar 

  • Parihar, M. S., Parihar, A., Fujita, M., Hashimoto, M., & Ghafourifar, P. (2009). Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells. International Journal of Biochemistry & Cell Biology, 41(10), 2015–2024.

    Article  CAS  Google Scholar 

  • Perfeito, R., Lazaro, D. F., Outeiro, T. F., & Rego, A. C. (2014). Linking alpha-synuclein phosphorylation to reactive oxygen species formation and mitochondrial dysfunction in SH-SY5Y cells. Molecular and Cellular Neuroscience, 62, 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Perfeito, R., Ribeiro, M., & Rego, A. C. (2017). Alpha-synuclein-induced oxidative stress correlates with altered superoxide dismutase and glutathione synthesis in human neuroblastoma SH-SY5Y cells. Archives of Toxicology, 91(3), 1245–1259.

    Article  CAS  PubMed  Google Scholar 

  • Poeggeler, B., Sambamurti, K., Siedlak, S. L., Perry, G., Smith, M. A., & Pappolla, M. A. (2010). A novel endogenous indole protects rodent mitochondria and extends rotifer lifespan. PLoS ONE, 5(4), e10206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porritt, M. J., Batchelor, P. E., & Howells, D. W. (2005). Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons. Experimental Neurology, 192(1), 226–234.

    Article  CAS  PubMed  Google Scholar 

  • Possel, H., Noack, H., Augustin, W., Keilhoff, G., & Wolf, G. (1997). 2,7-Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation. FEBS Letters, 416(2), 175–178.

    Article  CAS  PubMed  Google Scholar 

  • Protter, D., Lang, C., & Cooper, A. A. (2012). Alpha-synuclein and mitochondrial dysfunction: A pathogenic partnership in Parkinson’s disease? Parkinsons Disease, 2012, 829207.

    Google Scholar 

  • Pryde, K. R., Taanman, J. W., & Schapira, A. H. (2016). A LON-ClpP proteolytic axis degrades complex I to extinguish ROS production in depolarized mitochondria. Cell Reports, 17(10), 2522–2531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radunovic, A., Porto, W. G., Zeman, S., & Leigh, P. N. (1997). Increased mitochondrial superoxide dismutase activity in Parkinson’s disease but not amyotrophic lateral sclerosis motor cortex. Neuroscience Letters, 239(2–3), 105–108.

    Article  CAS  PubMed  Google Scholar 

  • Ren, Y., Jiang, H., Ma, D., Nakaso, K., & Feng, J. (2011). Parkin degrades estrogen-related receptors to limit the expression of monoamine oxidases. Human Molecular Genetics, 20(6), 1074–1083.

    Article  CAS  PubMed  Google Scholar 

  • Rettig, W. J., Spengler, B. A., Chesa, P. G., Old, L. J., & Biedler, J. L. (1987). Coordinate changes in neuronal phenotype and surface antigen expression in human neuroblastoma cell variants. Cancer Research, 47(5), 1383–1389.

    CAS  PubMed  Google Scholar 

  • Riley, B. E., Gardai, S. J., Emig-Agius, D., Bessarabova, M., Ivliev, A. E., Schule, B., et al. (2014). Systems-based analyses of brain regions functionally impacted in Parkinson’s disease reveals underlying causal mechanisms. PLoS ONE, 9(8), e102909.

    Article  PubMed  PubMed Central  Google Scholar 

  • Robakis, D., & Fahn, S. (2015). Defining the role of the monoamine oxidase-B inhibitors for Parkinson’s disease. CNS Drugs, 29(6), 433–441.

    Article  CAS  PubMed  Google Scholar 

  • Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 167(6), 1469.e1412–1480.e1412.

    Article  CAS  Google Scholar 

  • Sanchez-Ramos, J. R., Hefti, F., & Weiner, W. J. (1987). Paraquat and Parkinson’s disease. Neurology, 37(4), 728.

    Article  CAS  PubMed  Google Scholar 

  • Santiago, J. A., Scherzer, C. R., & Potashkin, J. A. (2014). Network analysis identifies SOD2 mRNA as a potential biomarker for Parkinson’s disease. PLoS ONE, 9(10), e109042.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Satpute, R., Lomash, V., Kaushal, M., & Bhattacharya, R. (2013). Neuroprotective effects of alpha-ketoglutarate and ethyl pyruvate against motor dysfunction and oxidative changes caused by repeated 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine exposure in mice. Human and Experimental Toxicology, 32(7), 747–758.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, L., Giordano, S., Zelickson, B. R., Johnson, M. S., Benavides, G. A., Ouyang, X., et al. (2011). Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress. Free Radical Biology and Medicine, 51(11), 2007–2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, J., Du, T., Wang, X., Duan, C., Gao, G., Zhang, J., et al. (2014). alpha-Synuclein amino terminus regulates mitochondrial membrane permeability. Brain Research, 1591, 14–26.

    Article  CAS  PubMed  Google Scholar 

  • Shimoda-Matsubayashi, S., Hattori, T., Matsumine, H., Shinohara, A., Yoritaka, A., Mori, H., et al. (1997). Mn SOD activity and protein in a patient with chromosome 6-linked autosomal recessive Parkinsonism in comparison with Parkinson’s disease and control. Neurology, 49(5), 1257–1262.

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava, A. N., Redeker, V., Fritz, N., Pieri, L., Almeida, L. G., Spolidoro, M., et al. (2015). alpha-synuclein assemblies sequester neuronal alpha3-Na+/K+-ATPase and impair Na+ gradient. EMBO Journal, 34(19), 2408–2423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui, A., Chinta, S. J., Mallajosyula, J. K., Rajagopolan, S., Hanson, I., Rane, A., et al. (2012a). Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: Implications for Parkinson’s disease. Free Radical Biology and Medicine, 53(4), 993–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui, A., Hanson, I., & Andersen, J. K. (2012b). Mao-B elevation decreases Parkin’s ability to efficiently clear damaged mitochondria: Protective effects of rapamycin. Free Radical Research, 46(8), 1011–1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stichel, C. C., Zhu, X. R., Bader, V., Linnartz, B., Schmidt, S., & Lubbert, H. (2007). Mono- and double-mutant mouse models of Parkinson’s disease display severe mitochondrial damage. Human Molecular Genetics, 16(20), 2377–2393.

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam, S. R., Vergnes, L., Franich, N. R., Reue, K., & Chesselet, M. F. (2014). Region specific mitochondrial impairment in mice with widespread overexpression of alpha-synuclein. Neurobiology of Diseases, 70, 204–213.

    Article  CAS  Google Scholar 

  • Taylor, E. B., & Rutter, J. (2011). Mitochondrial quality control by the ubiquitin-proteasome system. Biochemical Society Transactions, 39(5), 1509–1513.

    Article  CAS  PubMed  Google Scholar 

  • Thakur, P., & Nehru, B. (2015). Inhibition of neuroinflammation and mitochondrial dysfunctions by carbenoxolone in the rotenone model of Parkinson’s disease. Molecular Neurobiology, 51(1), 209–219.

    Article  CAS  PubMed  Google Scholar 

  • Thiessen, A., Schmidt, M. M., & Dringen, R. (2010). Fumaric acid dialkyl esters deprive cultured rat oligodendroglial cells of glutathione and upregulate the expression of heme oxygenase 1. Neuroscience Letters, 475(1), 56–60.

    Article  CAS  PubMed  Google Scholar 

  • Toivola, D. M., Boor, P., Alam, C., & Strnad, P. (2015). Keratins in health and disease. Current Opinion in Cell Biology, 32, 73–81.

    Article  CAS  PubMed  Google Scholar 

  • Valerio, A., D’Antona, G., & Nisoli, E. (2011). Branched-chain amino acids, mitochondrial biogenesis, and healthspan: An evolutionary perspective. Aging, 3(5), 464–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ved, R., Saha, S., Westlund, B., Perier, C., Burnam, L., Sluder, A., et al. (2005). Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans. Journal of Biological Chemistry, 280(52), 42655–42668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegrzyn, J., Potla, R., Chwae, Y. J., Sepuri, N. B., Zhang, Q., Koeck, T., et al. (2009). Function of mitochondrial Stat3 in cellular respiration. Science, 323(5915), 793–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westlund, K. N., Denney, R. M., Rose, R. M., & Abell, C. W. (1988). Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience, 25(2), 439–456.

    Article  CAS  PubMed  Google Scholar 

  • Wilkins, H. M., Harris, J. L., Carl, S. M., Lezi, E., Lu, J., Eva Selfridge, J., et al. (2014). Oxaloacetate activates brain mitochondrial biogenesis, enhances the insulin pathway, reduces inflammation and stimulates neurogenesis. Human Molecular Genetics, 23(24), 6528–6541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins, H. M., Koppel, S., Carl, S. M., Ramanujan, S., Weidling, I., Michaelis, M. L., et al. (2016). Oxaloacetate enhances neuronal cell bioenergetic fluxes and infrastructure. Journal of Neurochemistry, 137(1), 76–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisniewski, J. R., Zougman, A., Nagaraj, N., & Mann, M. (2009). Universal sample preparation method for proteome analysis. Nature Methods, 6(5), 359–362.

    Article  CAS  PubMed  Google Scholar 

  • Xilouri, M., Brekk, O. R., & Stefanis, L. (2013). Alpha-synuclein and protein degradation systems: A reciprocal relationship. Molecular Neurobiology, 47(2), 537–551.

    Article  CAS  PubMed  Google Scholar 

  • Xun, Z., Lee, D. Y., Lim, J., Canaria, C. A., Barnebey, A., Yanonne, S. M., et al. (2012). Retinoic acid-induced differentiation increases the rate of oxygen consumption and enhances the spare respiratory capacity of mitochondria in SH-SY5Y cells. Mechanisms of Ageing and Development, 133(4), 176–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi, X., & Kabanov, A. V. (2013). Brain delivery of proteins via their fatty acid and block copolymer modifications. Journal of Drug Targeting, 21(10), 940–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youdim, M. B., & Weinstock, M. (2004). Therapeutic applications of selective and non-selective inhibitors of monoamine oxidase A and B that do not cause significant tyramine potentiation. Neurotoxicology, 25(1–2), 243–250.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, Y., Sun, J., Zhao, M., Hu, J., Wang, X., Du, G., et al. (2010). Overexpression of alpha-synuclein down-regulates BDNF expression. Cellular and Molecular Neurobiology, 30(6), 939–946.

    Article  CAS  PubMed  Google Scholar 

  • Zaleska, M. M., & Floyd, R. A. (1985). Regional lipid peroxidation in rat brain in vitro: Possible role of endogenous iron. Neurochemical Research, 10(3), 397–410.

    Article  CAS  PubMed  Google Scholar 

  • Zarranz, J. J., Alegre, J., Gomez-Esteban, J. C., Lezcano, E., Ros, R., Ampuero, I., et al. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Annals of Neurology, 55(2), 164–173.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, G., Miura, Y., Shoji, H., Yamada, S., & Matsuishi, T. (2001). Platelet monoamine oxidase B and plasma beta-phenylethylamine in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 70(2), 229–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, H. Y., Zheng, G. T., & Zhang, S. S. (1996). Effects of l-malate, an inhibitor of glutamate decarboxylase, on learning and memory in mice. Yao Xue Xue Bao, 31(12), 897–900.

    CAS  PubMed  Google Scholar 

  • Zhu, M., Li, J., & Fink, A. L. (2003). The association of alpha-synuclein with membranes affects bilayer structure, stability, and fibril formation. Journal of Biological Chemistry, 278(41), 40186–40197.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by East Tennessee State University and University of South Florida funds provided to PCB.

Authors’ Contributions

VD, JG, and PB conceived the experiments. VD, SZ, YZ, TP, CR, VBD, JC, EC, EF, and HG performed the ATP, ROS, and oxygen consumption assays in the main section of the paper. JG performed the ATP, ROS, and viability assays in the supplemental data. VD, DC, SS, HM, and PB contributed to the proteomics experiments and data analysis. UJ and DL constructed and provided the stably transfected M17 cell line, respectively. DP and DL performed and supervised the Western blot analysis, respectively. VD and PB wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. Bradshaw.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delic, V., Griffin, J.W.D., Zivkovic, S. et al. Individual Amino Acid Supplementation Can Improve Energy Metabolism and Decrease ROS Production in Neuronal Cells Overexpressing Alpha-Synuclein. Neuromol Med 19, 322–344 (2017). https://doi.org/10.1007/s12017-017-8448-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-017-8448-8

Keywords

Navigation