Skip to main content

Advertisement

Log in

Role of dietary phenols in mitigating microglia-mediated neuroinflammation

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Chronic neuroinflammation is a pathological feature of a number of central nervous system (CNS) diseases and is mediated by sustained activation of microglial cells, the innate immune cells of the CNS. Studies have mainly focused on identifying the molecular and epigenetic mechanisms of microglial activation. This is crucial in designing therapeutic strategies for neuropathologies in which prolonged microglial activation is known to exacerbate disease condition. In recent years, increasing evidence show that naturally occurring compounds present in regular diet could function as “nutraceuticals,” arresting microglial activation, and thus conferring neuroprotection. This review summarizes our understanding of the role of dietary phenolic nutraceuticals in mitigating microglia-mediated neuroinflammation. Studies show that these natural phenols inhibit key signaling pathways in activated microglia such as the NFκB, MAPK and JAK-STAT that trigger microglia-mediated inflammation in various neuropathological conditions such as injury, infection, stroke, autism and neurodegenerative diseases, i.e., Alzheimer’s disease and Parkinson’s disease. The anti-inflammatory and antioxidant effect exerted by these natural phenols have shown considerable success in improving disease condition in animal models of neuropathologies, and thus seem to be suitable candidates for developing therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad, A., Khan, M. M., Hoda, M. N., Raza, S. S., Khan, M. B., Javed, H., et al. (2011). Quercetin protects against oxidative stress associated damages in a rat model of transient focal cerebral ischemia and reperfusion. Neurochemical Research, 36(8), 1360–1371.

    Article  CAS  PubMed  Google Scholar 

  • Albright, A. V., & González-Scarano, F. (2004). Microarray analysis of activated mixed glial (microglia) and monocyte-derived macrophage gene expression. Journal of Neuroimmunology, 157(1), 27–38.

    Article  CAS  PubMed  Google Scholar 

  • Amri, A., Chaumeil, J. C., Sfar, S., & Charrueau, C. (2012). Administration of resveratrol: what formulation solutions to bioavailability limitations? Journal of Controlled Release, 158(2), 182–193.

    Article  CAS  PubMed  Google Scholar 

  • Bagli, E., Stefaniotou, M., Morbidelli, L., Ziche, M., Psillas, K., Murphy, C., et al. (2004). Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3′-kinase activity. Cancer Research, 64(21), 7936–7946.

    Article  CAS  PubMed  Google Scholar 

  • Bambini-Junior, V., Zanatta, G., Nunes, G. D. F., de Melo, G. M., Michels, M., Fontes-Dutra, M., et al. (2014). Resveratrol prevents social deficits in animal model of autism induced by valproic acid. Neuroscience Letters, 583, 176–181.

    Article  CAS  PubMed  Google Scholar 

  • Bhandari, R., & Kuhad, A. (2015). Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of autism spectrum disorders. Life Sciences, 141, 156–169.

    Article  CAS  PubMed  Google Scholar 

  • Bisht, K., Wagner, K.-H., & Bulmer, A. C. (2010). Curcumin, resveratrol and flavonoids as anti-inflammatory, cyto-and DNA-protective dietary compounds. Toxicology, 278(1), 88–100.

    Article  CAS  PubMed  Google Scholar 

  • Bournival, J., Plouffe, M., Renaud, J., Provencher, C., & Martinoli, M.-G. (2012). Quercetin and Sesamin Protect Dopaminergic Cells from MPP < sup > . Oxidative medicine and cellular longevity, 2012.

  • Burton, M. D., Rytych, J. L., Amin, R., & Johnson, R. W. (2015). Dietary luteolin reduces pro-inflammatory microglia in the brain of senescent mice. Rejuvenation Research(ja).

  • Busch, C., Burkard, M., Leischner, C., Lauer, U. M., Frank, J., & Venturelli, S. (2015). Epigenetic activities of flavonoids in the prevention and treatment of cancer. Clinical epigenetics, 7(1), 1.

    Article  Google Scholar 

  • Butovsky, O., Ziv, Y., Schwartz, A., Landa, G., Talpalar, A. E., Pluchino, S., et al. (2006). Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Molecular and Cellular Neuroscience, 31(1), 149–160.

    Article  CAS  PubMed  Google Scholar 

  • Capiralla, H., Vingtdeux, V., Zhao, H., Sankowski, R., Al-Abed, Y., Davies, P., et al. (2012). Resveratrol mitigates lipopolysaccharide-and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. Journal of Neurochemistry, 120(3), 461–472.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty, J., Singh, R., Dutta, D., Naskar, A., Rajamma, U., & Mohanakumar, K. P. (2014). Quercetin Improves Behavioral Deficiencies, Restores Astrocytes and Microglia, and Reduces Serotonin Metabolism in 3-Nitropropionic Acid-Induced Rat Model of Huntington’s Disease. CNS Neuroscience & Therapeutics, 20(1), 10–19.

    Article  CAS  Google Scholar 

  • Chan, A., Seguin, R., Magnus, T., Papadimitriou, C., Toyka, K. V., Antel, J. P., et al. (2003). Phagocytosis of apoptotic inflammatory cells by microglia and its therapeutic implications: termination of CNS autoimmune inflammation and modulation by interferon-beta. Glia, 43(3), 231–242.

    Article  PubMed  Google Scholar 

  • Chang, C. Y., Choi, D.-K., Lee, D. K., Hong, Y. J., & Park, E. J. (2013). Resveratrol confers protection against rotenone-induced neurotoxicity by modulating myeloperoxidase levels in glial cells. PLoS ONE, 8(4), e60654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J.-C., Ho, F.-M., Chao, P.-D. L., Chen, C.-P., Jeng, K.-C. G., Hsu, H.-B., et al. (2005). Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IκB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. European Journal of Pharmacology, 521(1), 9–20.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, A.-C., Huang, T.-C., Lai, C.-S., & Pan, M.-H. (2005). Induction of apoptosis by luteolin through cleavage of Bcl-2 family in human leukemia HL-60 cells. European Journal of Pharmacology, 509(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, K. K., Yeung, C. F., Ho, S. W., Chow, S. F., Chow, A. H., & Baum, L. (2013). Highly stabilized curcumin nanoparticles tested in an in vitro blood–brain barrier model and in Alzheimer’s disease Tg2576 mice. The AAPS journal, 15(2), 324–336.

    Article  CAS  PubMed  Google Scholar 

  • Cherry, J. D., Olschowka, J. A., & O’Banion, M. K. (2014). Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation, 11(1), 98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi, D. K., Koppula, S., & Suk, K. (2011). Inhibitors of microglial neurotoxicity: focus on natural products. Molecules, 16(2), 1021–1043.

    Article  CAS  PubMed  Google Scholar 

  • Chun-Fu, W., Jing-Yu, Y., Fang, W., & Xiao-Xiao, W. (2013). Resveratrol: botanical origin, pharmacological activity and applications. Chinese Journal of Natural Medicines, 11(1), 1–15.

    Google Scholar 

  • Chung, S. Y., & Han, S. H. (2003). Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition. Journal of Pineal Research, 34(2), 95–102.

    Article  CAS  PubMed  Google Scholar 

  • Cianciulli, A., Dragone, T., Calvello, R., Porro, C., Trotta, T., Lofrumento, D. D., et al. (2015). IL-10 plays a pivotal role in anti-inflammatory effects of resveratrol in activated microglia cells. International Immunopharmacology, 24(2), 369–376.

    Article  CAS  PubMed  Google Scholar 

  • Clark, D., Tuor, U. I., Thompson, R., Institoris, A., Kulynych, A., Zhang, X., et al. (2012). Protection against recurrent stroke with resveratrol: endothelial protection. PLoS ONE, 7(10), e47792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crain, J. M., Nikodemova, M., & Watters, J. J. (2013). Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. Journal of Neuroscience Research, 91(9), 1143–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullheim, S., & Thams, S. (2007). The microglial networks of the brain and their role in neuronal network plasticity after lesion. Brain Research Reviews, 55(1), 89–96.

    Article  CAS  PubMed  Google Scholar 

  • Dhawan, S., Kapil, R., & Singh, B. (2011). Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. Journal of Pharmacy and Pharmacology, 63(3), 342–351.

    Article  CAS  PubMed  Google Scholar 

  • Dheen, S. T., Jun, Y., Yan, Z., Tay, S. S., & Ang Ling, E. (2005). Retinoic acid inhibits expression of TNF-α and iNOS in activated rat microglia. Glia, 50(1), 21–31.

    Article  PubMed  Google Scholar 

  • Dirscherl, K., Karlstetter, M., Ebert, S., Kraus, D., Hlawatsch, J., Walczak, Y., et al. (2010). Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. J Neuroinflammation, 7(3), 1742–2094.

    Google Scholar 

  • Dohare, P., Garg, P., Jain, V., Nath, C., & Ray, M. (2008). Dose dependence and therapeutic window for the neuroprotective effects of curcumin in thromboembolic model of rat. Behavioural Brain Research, 193(2), 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Dohi, K., Ohtaki, H., Nakamachi, T., Yofu, S., Satoh, K., Miyamoto, K., et al. (2010). Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflammation, 7(1), 41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dragone, T., Cianciulli, A., Calvello, R., Porro, C., Trotta, T., & Panaro, M. A. (2014). Resveratrol counteracts lipopolysaccharide-mediated microglial inflammation by modulating a SOCS-1 dependent signaling pathway. Toxicology in Vitro, 28(6), 1126–1135.

    Article  CAS  PubMed  Google Scholar 

  • Frémont, L. (2000). Biological effects of resveratrol. Life Sciences, 66(8), 663–673.

    Article  PubMed  Google Scholar 

  • Garcia-Alloza, M., Borrelli, L., Rozkalne, A., Hyman, B., & Bacskai, B. (2007). Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. Journal of Neurochemistry, 102(4), 1095–1104.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Nicola, D., Fransen, N. L., Suzzi, S., & Perry, V. H. (2013). Regulation of microglial proliferation during chronic neurodegeneration. The Journal of Neuroscience, 33(6), 2481–2493.

    Article  PubMed  CAS  Google Scholar 

  • Graeber, M. B., Scheithauer, B. W., & Kreutzberg, G. W. (2002). Microglia in brain tumors. Glia, 40(2), 252–259.

    Article  PubMed  Google Scholar 

  • Guardia, T., Rotelli, A. E., Juarez, A. O., & Pelzer, L. E. (2001). Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Il farmaco, 56(9), 683–687.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, S. C., Patchva, S., & Aggarwal, B. B. (2013). Therapeutic roles of curcumin: lessons learned from clinical trials. The AAPS journal, 15(1), 195–218.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, S. C., Prasad, S., Kim, J. H., Patchva, S., Webb, L. J., Priyadarsini, I. K., et al. (2011). Multitargeting by curcumin as revealed by molecular interaction studies. Natural product reports, 28(12), 1937–1955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanisch, U. K. (2002). Microglia as a source and target of cytokines. Glia, 40(2), 140–155.

    Article  PubMed  Google Scholar 

  • Hanisch, U.-K., & Kettenmann, H. (2007). Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience, 10(11), 1387–1394.

    Article  CAS  PubMed  Google Scholar 

  • He, L.-F., Chen, H.-J., Qian, L.-H., Chen, G.-Y., & Buzby, J. S. (2010). Curcumin protects pre-oligodendrocytes from activated microglia in vitro and in vivo. Brain Research, 1339, 60–69.

    Article  CAS  PubMed  Google Scholar 

  • Hickman, S. E., Kingery, N. D., Ohsumi, T. K., Borowsky, M. L., Wang, L.-C., Means, T. K., et al. (2013). The microglial sensome revealed by direct RNA sequencing. Nature Neuroscience, 16(12), 1896–1905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho, L., Ferruzzi, M. G., Janle, E. M., Wang, J., Gong, B., Chen, T.-Y., et al. (2013). Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer’s disease. The FASEB Journal, 27(2), 769–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huo, Y., Rangarajan, P., Ling, E.-A., & Dheen, S. T. (2011). Dexamethasone inhibits the Nox-dependent ROS production via suppression of MKP-1-dependent MAPK pathways in activated microglia. BMC neuroscience, 12(1), 49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishisaka, A., Ichikawa, S., Sakakibara, H., Piskula, M. K., Nakamura, T., Kato, Y., et al. (2011). Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radical Biology and Medicine, 51(7), 1329–1336.

    Article  CAS  PubMed  Google Scholar 

  • Jang, S., Dilger, R. N., & Johnson, R. W. (2010). Luteolin inhibits microglia and alters hippocampal-dependent spatial working memory in aged mice. The Journal of nutrition, 140(10), 1892–1898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang, S., Kelley, K. W., & Johnson, R. W. (2008). Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proceedings of the National Academy of Sciences, 105(21), 7534–7539.

    Article  CAS  Google Scholar 

  • Jasiński, M., Jasińska, L., & Ogrodowczyk, M. (2013). Resveratrol in prostate diseases-a short review. Central European journal of 0075rology, 66(2)

  • Jin, C.-Y., Lee, J.-D., Park, C., Choi, Y-h, & Kim, G.-Y. (2007). Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia. Acta Pharmacologica Sinica, 28(10), 1645–1651.

    Article  CAS  PubMed  Google Scholar 

  • Jin, F., Wu, Q., Lu, Y.-F., Gong, Q.-H., & Shi, J.-S. (2008). Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. European Journal of Pharmacology, 600(1), 78–82.

    Article  CAS  PubMed  Google Scholar 

  • Joseph, J. A., Fisher, D. R., Cheng, V., Rimando, A. M., & Shukitt-Hale, B. (2008). Cellular and behavioral effects of stilbene resveratrol analogues: implications for reducing the deleterious effects of aging. Journal of Agricultural and Food Chemistry, 56(22), 10544–10551.

    Article  CAS  PubMed  Google Scholar 

  • Jung, K. K., Lee, H. S., Cho, J. Y., Shin, W. C., Rhee, M. H., Kim, T. G., et al. (2006). Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life Sciences, 79(21), 2022–2031.

    Article  CAS  PubMed  Google Scholar 

  • Kao, T.-K., Ou, Y.-C., Lin, S.-Y., Pan, H.-C., Song, P.-J., Raung, S.-L., et al. (2011). Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia. The Journal of nutritional biochemistry, 22(7), 612–624.

    Article  CAS  PubMed  Google Scholar 

  • Kao, T.-K., Ou, Y.-C., Raung, S.-L., Lai, C.-Y., Liao, S.-L., & Chen, C.-J. (2010). Inhibition of nitric oxide production by quercetin in endotoxin/cytokine-stimulated microglia. Life Sciences, 86(9), 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Karlstetter, M., Lippe, E., Walczak, Y., Moehle, C., Aslanidis, A., Mirza, M., et al. (2011). Curcumin is a potent modulator of microglial gene expression and migration. J Neuroinflammation, 8, 125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karuppagounder, S. S., Pinto, J. T., Xu, H., Chen, H.-L., Beal, M. F., & Gibson, G. E. (2009). Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochemistry International, 54(2), 111–118.

    Article  CAS  PubMed  Google Scholar 

  • Kaushal, V., & Schlichter, L. C. (2008). Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. The Journal of Neuroscience, 28(9), 2221–2230.

    Article  CAS  PubMed  Google Scholar 

  • Kelso, M. L., Scheff, N. N., Scheff, S. W., & Pauly, J. R. (2011). Melatonin and minocycline for combinatorial therapy to improve functional and histopathological deficits following traumatic brain injury. Neuroscience Letters, 488(1), 60–64.

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann, H., Kirchhoff, F., & Verkhratsky, A. (2013). Microglia: new roles for the synaptic stripper. Neuron, 77(1), 10–18.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. J., Lee, W., & Yun, J. M. (2014). Luteolin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production and Its Epigenetic Mechanism in Human Monocytes. Phytotherapy Research, 28(9), 1383–1391.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. Y., Park, E. J., Joe, E.-H., & Jou, I. (2003). Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. The Journal of Immunology, 171(11), 6072–6079.

    Article  CAS  PubMed  Google Scholar 

  • Koedel, U., & Pfister, H. W. (1999). Oxidative stress in bacterial meningitis. Brain Pathology, 9(1), 57–67.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Alvarez-Croda, D.-M., Stoica, B. A., Faden, A. I., & Loane, D. J. (2015). Microglial/macrophage polarization dynamics following traumatic brain injury. Journal of neurotrauma.

  • Labinskyy, N., Csiszar, A., Veress, G., Stef, G., Pacher, P., Oroszi, G., et al. (2006). Vascular dysfunction in aging: potential effects of resveratrol, an anti-inflammatory phytoestrogen. Current Medicinal Chemistry, 13(9), 989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalancette-Hébert, M., Gowing, G., Simard, A., Weng, Y. C., & Kriz, J. (2007). Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. The Journal of Neuroscience, 27(10), 2596–2605.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K.-H., Park, E., Lee, H.-J., Kim, M.-O., Cha, Y.-J., Kim, J.-M., et al. (2011). Effects of daily quercetin-rich supplementation on cardiometabolic risks in male smokers. Nutrition research and practice, 5(1), 28–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., & Graeber, M. B. (2012). The molecular profile of microglia under the influence of glioma. Neuro-oncology, nos116.

  • Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. The Journal of Neuroscience, 21(21), 8370–8377.

    CAS  PubMed  Google Scholar 

  • Lin, L.-F., Chiu, S.-P., Wu, M.-J., Chen, P.-Y., & Yen, J.-H. (2012). Luteolin induces microRNA-132 expression and modulates neurite outgrowth in PC12 cells. PLoS ONE, 7(8), e43304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z.-J., Liu, W., Liu, L., Xiao, C., Wang, Y., & Jiao, J.-S. (2013). Curcumin protects neuron against cerebral ischemia-induced inflammation through improving PPAR-gamma function. Evidence-Based Complementary and Alternative Medicine, 2013.

  • Lopez-Lazaro, M. (2009). Distribution and biological activities of the flavonoid luteolin. Mini reviews in medicinal chemistry, 9(1), 31–59.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, P., Roychowdhury, S., Engelmann, M., Wolf, G., & Horn, T. F. (2003). Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide, 9(2), 64–76.

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari, R. K., Singh, A. K., Gaddipati, J., & Srimal, R. C. (2006). Multiple biological activities of curcumin: a short review. Life Sciences, 78(18), 2081–2087.

    Article  CAS  PubMed  Google Scholar 

  • Majumdar, A., Cruz, D., Asamoah, N., Buxbaum, A., Sohar, I., Lobel, P., et al. (2007). Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Molecular Biology of the Cell, 18(4), 1490–1496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokni, M., Elkahoui, S., Limam, F., Amri, M., & Aouani, E. (2007). Effect of resveratrol on antioxidant enzyme activities in the brain of healthy rat. Neurochemical Research, 32(6), 981–987.

    Article  CAS  PubMed  Google Scholar 

  • Moran, L., Duke, D., Turkheimer, F., Banati, R., & Graeber, M. (2004). Towards a transcriptome definition of microglial cells. Neurogenetics, 5(2), 95–108.

    Article  CAS  PubMed  Google Scholar 

  • Murakami, A., Ashida, H., & Terao, J. (2008). Multitargeted cancer prevention by quercetin. Cancer Letters, 269(2), 315–325.

    Article  CAS  PubMed  Google Scholar 

  • Muthian, G., & Bright, J. J. (2004). Quercetin, a flavonoid phytoestrogen, ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK-STAT pathway in T lymphocyte. Journal of Clinical Immunology, 24(5), 542–552.

    Article  CAS  PubMed  Google Scholar 

  • Nayak, D., Huo, Y., Kwang, W., Pushparaj, P., Kumar, S., Ling, E.-A., et al. (2010). Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience, 166(1), 132–144.

    Article  CAS  PubMed  Google Scholar 

  • Nazari, Q. A., Takada-Takatori, Y., Hashimoto, T., Imaizumi, A., Izumi, Y., Akaike, A., et al. (2014). Potential protective effect of highly bioavailable curcumin on an oxidative stress model induced by microinjection of sodium nitroprusside in mice brain. Food & function, 5(5), 984–989.

    Article  CAS  Google Scholar 

  • Nichols, J. A., & Katiyar, S. K. (2010). Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Archives of Dermatological Research, 302(2), 71–83.

    Article  CAS  PubMed  Google Scholar 

  • Parakalan, R., Jiang, B., Nimmi, B., Janani, M., Jayapal, M., Lu, J., et al. (2012). Transcriptome analysis of amoeboid and ramified microglia isolated from the corpus callosum of rat brain. BMC neuroscience, 13(1), 1.

    Article  CAS  Google Scholar 

  • Park, E., Kim, D. K., & Chun, H. S. (2012). Resveratrol inhibits lipopolysaccharide-induced phagocytotic activity in BV2 cells. Journal of the Korean Society for Applied Biological Chemistry, 55(6), 803–807.

    Article  CAS  Google Scholar 

  • Perry, M. C., Demeule, M., Regina, A., Moumdjian, R., & Beliveau, R. (2010a). Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Molecular Nutrition & Food Research, 54(8), 1192–1201.

    CAS  Google Scholar 

  • Perry, V. H., Nicoll, J. A., & Holmes, C. (2010b). Microglia in neurodegenerative disease. Nature Reviews Neurology, 6(4), 193–201.

    Article  PubMed  Google Scholar 

  • Persidsky, Y., & Gendelman, H. E. (2003). Mononuclear phagocyte immunity and the neuropathogenesis of HIV-1 infection. Journal of Leukocyte Biology, 74(5), 691–701.

    Article  CAS  PubMed  Google Scholar 

  • Piantadosi, C. A., Withers, C. M., Bartz, R. R., MacGarvey, N. C., Fu, P., Sweeney, T. E., et al. (2011). Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression. Journal of Biological Chemistry, 286(18), 16374–16385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramlackhansingh, A. F., Brooks, D. J., Greenwood, R. J., Bose, S. K., Turkheimer, F. E., Kinnunen, K. M., et al. (2011). Inflammation after trauma: microglial activation and traumatic brain injury. Annals of neurology, 70(3), 374–383.

    Article  PubMed  Google Scholar 

  • Rangarajan, P., Eng-Ang, L., & Thameem Dheen, S. (2013). Potential drugs targeting microglia: current knowledge and future prospects. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 12(6), 799-806.

  • Rayan, N., Baby, N., Pitchai, D., Indraswari, F., Ling, E., Lu, J., et al. (2010). Costunolide inhibits proinflammatory cytokines and iNOS in activated murine BV2 microglia. Frontiers in bioscience (Elite edition), 3, 1079–1091.

    Google Scholar 

  • Reichard, J. F., Motz, G. T., & Puga, A. (2007). Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucleic Acids Research, 35(21), 7074–7086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezai-Zadeh, K., Ehrhart, J., Bai, Y., Sanberg, P. R., Bickford, P., Tan, J., et al. (2008). Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. J Neuroinflammation, 5, 41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rinwa, P., & Kumar, A. (2013). Quercetin suppress microglial neuroinflammatory response and induce antidepressent-like effect in olfactory bulbectomized rats. Neuroscience, 255, 86–98.

    Article  CAS  PubMed  Google Scholar 

  • Sabogal-Guáqueta, A. M., Muñoz-Manco, J. I., Ramírez-Pineda, J. R., Lamprea-Rodriguez, M., Osorio, E., & Cardona-Gómez, G. P. (2015). The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 93, 134–145.

    Article  PubMed  CAS  Google Scholar 

  • Saijo, K., & Glass, C. K. (2011). Microglial cell origin and phenotypes in health and disease. Nature Reviews Immunology, 11(11), 775–787.

    Article  CAS  PubMed  Google Scholar 

  • Samini, F., Samarghandian, S., Borji, A., & Mohammadi, G. (2013). Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat. Pharmacology, Biochemistry and Behavior, 110, 238–244.

    Article  CAS  PubMed  Google Scholar 

  • Satoh, J.-I., Asahina, N., Kitano, S., & Kino, Y. (2014). A comprehensive profile of ChIP-Seq-Based PU. 1/Spi1 target genes in microglia. Gene regulation and systems biology, 8, 127.

  • Sawmiller, D., Li, S., Shahaduzzaman, M., Smith, A. J., Obregon, D., Giunta, B., et al. (2014). Luteolin reduces Alzheimer’s disease pathologies induced by traumatic brain injury. International Journal of Molecular Sciences, 15(1), 895–904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmitt, E., Hoehn, P., Huels, C., Goedert, S., Palm, N., Rüde, E., et al. (1994). T helper type 1 development of naive CD4 + T cells requires the coordinate action of interleukin-12 and interferon-γ and is inhibited by transforming growth factor-β. European Journal of Immunology, 24(4), 793–798.

    Article  CAS  PubMed  Google Scholar 

  • Schraufstätter, E., & Bernt, H. (1949). Antibacterial action of curcumin and related compounds. Nature, 164, 456–457.

    Article  PubMed  Google Scholar 

  • Sönmez, Ü., Sönmez, A., Erbil, G., Tekmen, I., & Baykara, B. (2007). Neuroprotective effects of resveratrol against traumatic brain injury in immature rats. Neuroscience Letters, 420(2), 133–137.

    Article  PubMed  CAS  Google Scholar 

  • Soriano, F. X., Léveillé, F., Papadia, S., Higgins, L. G., Varley, J., Baxter, P., et al. (2008). Induction of sulfiredoxin expression and reduction of peroxiredoxin hyperoxidation by the neuroprotective Nrf2 activator 3H–1, 2-dithiole-3-thione. Journal of Neurochemistry, 107(2), 533–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stence, N., Waite, M., & Dailey, M. E. (2001). Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia, 33(3), 256–266.

    Article  CAS  PubMed  Google Scholar 

  • Streit, W. J. (2006). Microglial senescence: does the brain’s immune system have an expiration date? Trends in Neurosciences, 29(9), 506–510.

    Article  CAS  PubMed  Google Scholar 

  • Sun, G. Y., Chen, Z., Jasmer, K. J., Chuang, D. Y., Gu, Z., Hannink, M., et al. (2015). Quercetin attenuates inflammatory responses in BV-2 microglial cells: role of MAPKs on the Nrf2 pathway and induction of heme oxygenase-1. PLoS ONE, 10(10), e0141509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun, D., Zhuang, X., Xiang, X., Liu, Y., Zhang, S., Liu, C., et al. (2010). A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Molecular Therapy, 18(9), 1606–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, K., Sugihara, G., Ouchi, Y., Nakamura, K., Futatsubashi, M., Takebayashi, K., et al. (2013). Microglial activation in young adults with autism spectrum disorder. JAMA psychiatry, 70(1), 49–58.

    Article  PubMed  Google Scholar 

  • Takano, T. (2015). Role of microglia in autism: recent advances. Developmental Neuroscience, 37(3), 195–202.

    Article  CAS  PubMed  Google Scholar 

  • Taliou, A., Zintzaras, E., Lykouras, L., & Francis, K. (2013). An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clinical Therapeutics, 35(5), 592–602.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, R. A., & Sansing, L. H. (2013). Microglial responses after ischemic stroke and intracerebral hemorrhage. Clinical and Developmental Immunology, 2013.

  • Tchantchou, F., Lacor, P. N., Cao, Z., Lao, L., Hou, Y., Cui, C., et al. (2009). Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. Journal of Alzheimer’s Disease, 18(4), 787–798.

    CAS  PubMed  Google Scholar 

  • Teiten, M. H., Dicato, M., & Diederich, M. (2013). Curcumin as a regulator of epigenetic events. Molecular Nutrition & Food Research, 57(9), 1619–1629.

    Article  CAS  Google Scholar 

  • Thameem Dheen, S., Kaur, C., & Ling, E.-A. (2007). Microglial activation and its implications in the brain diseases. Current Medicinal Chemistry, 14(11), 1189–1197.

    Article  PubMed  Google Scholar 

  • Thored, P., Heldmann, U., Gomes-Leal, W., Gisler, R., Darsalia, V., Taneera, J., et al. (2009). Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia, 57(8), 835–849.

    Article  PubMed  Google Scholar 

  • Tsilioni, I., Taliou, A., & FrancisK, Theoharides T. (2015). Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6. Translational Psychiatry, 5(9), e647.

    Article  CAS  PubMed  Google Scholar 

  • Venturelli, S., Berger, A., Böcker, A., Busch, C., Weiland, T., Noor, S., et al. (2013). Resveratrol as a pan-HDAC inhibitor alters the acetylation status of histone proteins in human-derived hepatoblastoma cells. PLoS ONE, 8(8), e73097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidak, M., Rozman, D., & Komel, R. (2015). Effects of Flavonoids from Food and Dietary Supplements on Glial and Glioblastoma Multiforme Cells. Molecules, 20(10), 19406–19432.

    Article  CAS  PubMed  Google Scholar 

  • Walker, D. G., & Lue, L.-F. (2015). Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimer’s Research & Therapy, 7(1), 1–9.

    Article  Google Scholar 

  • Wang, G., Zhang, J., Hu, X., Zhang, L., Mao, L., Jiang, X., et al. (2013). Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 33(12), 1864–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson, B. L., & Landreth, G. E. (2006). The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer’s disease. J Neuroinflammation, 3(1), 30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, A., Ying, Z., & Gomez-Pinilla, F. (2006). Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Experimental Neurology, 197(2), 309–317.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., & Drew, P. D. (2006). 9-Cis-retinoic acid suppresses inflammatory responses of microglia and astrocytes. Journal of Neuroimmunology, 171(1), 135–144.

    Article  CAS  PubMed  Google Scholar 

  • Youdim, K. A., Qaiser, M. Z., Begley, D. J., Rice-Evans, C. A., & Abbott, N. J. (2004). Flavonoid permeability across an in situ model of the blood–brain barrier. Free Radical Biology and Medicine, 36(5), 592–604.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Yi, B., Ma, J., Zhang, L., Zhang, H., Yang, Y., et al. (2015). Quercetin promotes neuronal and behavioral recovery by suppressing inflammatory response and apoptosis in a rat model of intracerebral hemorrhage. Neurochemical Research, 40(1), 195–203.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., Yu, S., Zheng, W., Feng, G., Luo, G., Wang, L., et al. (2010). Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Neurochemical Research, 35(3), 374–379.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, L.-H., Bi, W., Qi, R.-B., Wang, H.-D., & Lu, D.-X. (2011). Luteolin inhibits microglial inflammation and improves neuron survival against inflammation. International Journal of Neuroscience, 121(6), 329–336.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, H., Bian, C., Yuan, J., Chu, W., Xiang, X., Chen, F., et al. (2014). Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J Neuroinflammation, 11(59), 1186.

    Google Scholar 

  • Zou, L., Liu, W., Liu, C., Xiao, H., & McClements, D. J. (2015). Utilizing food matrix effects to enhance nutraceutical bioavailability: increase of curcumin bioaccessibility using excipient emulsions. Journal of Agricultural and Food Chemistry, 63(7), 2052–2062.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Dheen.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangarajan, P., Karthikeyan, A. & Dheen, S.T. Role of dietary phenols in mitigating microglia-mediated neuroinflammation. Neuromol Med 18, 453–464 (2016). https://doi.org/10.1007/s12017-016-8430-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-016-8430-x

Keywords

Navigation