Skip to main content

Advertisement

Log in

The Dynamics of Interactions Among Immune and Glioblastoma Cells

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Glioblastoma is the most common intracranial malignancy that constitutes about 50 % of all gliomas. Despite aggressive, multimodal therapy consisting of surgery, radiation, and chemotherapy, the outcome of patients with glioblastoma remains poor with 5-year survival rates of <10 %. Resistance to conventional therapies is most likely caused by several factors. Alterations in the functions of local immune mediators may represent a critical contributor to this resistance. The tumor microenvironment contains innate and adaptive immune cells in addition to the cancer cells and their surrounding stroma. These various cells communicate with each other by means of direct cell–cell contact or by soluble factors including cytokines and chemokines, and act in autocrine and paracrine manners to modulate tumor growth. There are dynamic interactions among the local immune elements and the tumor cells, where primarily the protective immune cells attempt to overcome the malignant cells. However, by developing somatic mutations and epigenetic modifications, the glioblastoma tumor cells acquire the capability of counteracting the local immune responses, and even exploit the immune cells and products for their own growth benefits. In this review, we survey those immune mechanisms that likely contribute to glioblastoma pathogenesis and may serve as a basis for novel treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamopoulou, E., & Naumann, U. (2013). HDAC inhibitors and their potential applications to glioblastoma therapy. Oncoimmunology, 2(8), e25219. doi:10.4161/onci.25219.

    PubMed Central  PubMed  Google Scholar 

  • Aggarwal, B. B., Vijayalekshmi, R. V., & Sung, B. (2009). Targeting inflammatory pathways for prevention and therapy of cancer: Short-term friend, long-term foe. Clinical Cancer Research, 15(2), 425–430. doi:10.1158/1078-0432.CCR-08-0149.

    CAS  PubMed  Google Scholar 

  • Aigner, L., & Bogdahn, U. (2008). TGF-beta in neural stem cells and in tumors of the central nervous system. Cell and Tissue Research, 331(1), 225–241. doi:10.1007/s00441-007-0466-7.

    PubMed  Google Scholar 

  • Akers, J. C., Ramakrishnan, V., Kim, R., Phillips, S., Kaimal, V., Mao, Y., et al. (2015). miRNA contents of cerebrospinal fluid extracellular vesicles in glioblastoma patients. Journal of Neuro-oncology, 123(2), 205–216. doi:10.1007/s11060-015-1784-3.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Akers, J. C., Ramakrishnan, V., Kim, R., Skog, J., Nakano, I., Pingle, S., et al. (2013). MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): A platform for glioblastoma biomarker development. PLoS ONE, 8(10), e78115. doi:10.1371/journal.pone.0078115.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Albesiano, E., Han, J. E., & Lim, M. (2010). Mechanisms of local immunoresistance in glioma. Neurosurgery Clinics of North America, 21(1), 17–29. doi:10.1016/j.nec.2009.08.008.

    PubMed  Google Scholar 

  • Aldape, K. D., Ballman, K., Furth, A., Buckner, J. C., Giannini, C., Burger, P. C., et al. (2004). Immunohistochemical detection of EGFRvIII in high malignancy grade astrocytomas and evaluation of prognostic significance. Journal of Neuropathology and Experimental Neurology, 63(7), 700–707.

    CAS  PubMed  Google Scholar 

  • Almand, B., Clark, J. I., Nikitina, E., van Beynen, J., English, N. R., Knight, S. C., et al. (2001). Increased production of immature myeloid cells in cancer patients: A mechanism of immunosuppression in cancer. The Journal of Immunology, 166(1), 678–689.

    CAS  PubMed  Google Scholar 

  • Andreola, G., Rivoltini, L., Castelli, C., Huber, V., Perego, P., Deho, P., et al. (2002). Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. Journal of Experimental Medicine, 195(10), 1303–1316.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Babu, R., & Adamson, D. C. (2012). Rindopepimut: An evidence-based review of its therapeutic potential in the treatment of EGFRvIII-positive glioblastoma. Core Evidence, 7, 93–103. doi:10.2147/CE.S29001.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bao, S., Wu, Q., Sathornsumetee, S., Hao, Y., Li, Z., Hjelmeland, A. B., et al. (2006). Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Research, 66(16), 7843–7848. doi:10.1158/0008-5472.CAN-06-1010.

    CAS  PubMed  Google Scholar 

  • Barker, C. A., Bishop, A. J., Chang, M., Beal, K., & Chan, T. A. (2013). Valproic acid use during radiation therapy for glioblastoma associated with improved survival. International Journal of Radiation Oncology Biology Physics, 86(3), 504–509. doi:10.1016/j.ijrobp.2013.02.012.

    CAS  Google Scholar 

  • Beier, C. P., Kumar, P., Meyer, K., Leukel, P., Bruttel, V., Aschenbrenner, I., et al. (2012). The cancer stem cell subtype determines immune infiltration of glioblastoma. Stem cells and Development, 21(15), 2753–2761. doi:10.1089/scd.2011.0660.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bellora, F., Castriconi, R., Dondero, A., Reggiardo, G., Moretta, L., Mantovani, A., et al. (2010). The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes. Proc Natl Acad Sci U S A, 107(50), 21659–21664. doi:10.1073/pnas.1007654108.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bhat, K. P., Balasubramaniyan, V., Vaillant, B., Ezhilarasan, R., Hummelink, K., Hollingsworth, F., et al. (2013). Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell, 24(3), 331–346. doi:10.1016/j.ccr.2013.08.001.

    CAS  PubMed  Google Scholar 

  • Caren, H., Pollard, S. M., & Beck, S. (2013). The good, the bad and the ugly: Epigenetic mechanisms in glioblastoma. Molecular Aspects of Medicine, 34(4), 849–862. doi:10.1016/j.mam.2012.06.007.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carro, M. S., Lim, W. K., Alvarez, M. J., Bollo, R. J., Zhao, X., Snyder, E. Y., et al. (2010). The transcriptional network for mesenchymal transformation of brain tumours. Nature, 463(7279), 318–325. doi:10.1038/nature08712.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Castriconi, R., Daga, A., Dondero, A., Zona, G., Poliani, P. L., Melotti, A., et al. (2009). NK cells recognize and kill human glioblastoma cells with stem cell-like properties. The Journal of Immunology, 182(6), 3530–3539. doi:10.4049/jimmunol.0802845.

    CAS  PubMed  Google Scholar 

  • Chalmin, F., Ladoire, S., Mignot, G., Vincent, J., Bruchard, M., Remy-Martin, J. P., et al. (2010). Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. The Journal of Clinical Investigation, 120(2), 457–471. doi:10.1172/JCI40483.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, W., Jin, W., Hardegen, N., Lei, K. J., Li, L., Marinos, N., et al. (2003). Conversion of peripheral CD4+ CD25 naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. Journal of Experimental Medicine, 198(12), 1875–1886. doi:10.1084/jem.20030152.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chie, E. K., Shin, J. H., Kim, J. H., Kim, H. J., Kim, I. A., & Kim, I. H. (2014). In vitro and in vivo radiosensitizing effect of valproic acid on fractionated irradiation. Cancer Research and Treatment,. doi:10.4143/crt.2014.026.

    Google Scholar 

  • Choi, B. D., Kuan, C. T., Cai, M., Archer, G. E., Mitchell, D. A., Gedeon, P. C., et al. (2013). Systemic administration of a bispecific antibody targeting EGFRvIII successfully treats intracerebral glioma. Proc Natl Acad Sci U S A, 110(1), 270–275. doi:10.1073/pnas.1219817110.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chow, K. K., Naik, S., Kakarla, S., Brawley, V. S., Shaffer, D. R., Yi, Z., et al. (2013). T cells redirected to EphA2 for the immunotherapy of glioblastoma. Molecular Therapy, 21(3), 629–637. doi:10.1038/mt.2012.210.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ciafre, S. A., Galardi, S., Mangiola, A., Ferracin, M., Liu, C. G., Sabatino, G., et al. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochemical and Biophysical Research Communications, 334(4), 1351–1358. doi:10.1016/j.bbrc.2005.07.030.

    CAS  PubMed  Google Scholar 

  • Clark, S. J., Harrison, J., & Frommer, M. (1995). CpNpG methylation in mammalian cells. Nature Genetics, 10(1), 20–27. doi:10.1038/ng0595-20.

    CAS  PubMed  Google Scholar 

  • Codo, P., Weller, M., Meister, G., Szabo, E., Steinle, A., Wolter, M., et al. (2014). MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape. Oncotarget, 5(17), 7651–7662.

    PubMed Central  PubMed  Google Scholar 

  • Cornago, M., Garcia-Alberich, C., Blasco-Angulo, N., Vall-Llaura, N., Nager, M., Herreros, J., et al. (2014). Histone deacetylase inhibitors promote glioma cell death by G2 checkpoint abrogation leading to mitotic catastrophe. Cell Death and Disease, 5, e1435. doi:10.1038/cddis.2014.412.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Corzo, C. A., Condamine, T., Lu, L., Cotter, M. J., Youn, J. I., Cheng, P., et al. (2010). HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. Journal of Experimental Medicine, 207(11), 2439–2453. doi:10.1084/jem.20100587.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crane, C. A., Ahn, B. J., Han, S. J., & Parsa, A. T. (2012). Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and expansion of regulatory T cells: Implications for immunotherapy. Neuro Oncology, 14(5), 584–595. doi:10.1093/neuonc/nos014.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Daga, A., Bottino, C., Castriconi, R., Gangemi, R., & Ferrini, S. (2011). New perspectives in glioma immunotherapy. Current Pharmaceutical Design, 17(23), 2439–2467.

    CAS  PubMed  Google Scholar 

  • Davies, D. C. (2002). Blood–brain barrier breakdown in septic encephalopathy and brain tumours. Journal of Anatomy, 200(6), 639–646.

    PubMed Central  CAS  PubMed  Google Scholar 

  • de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews Cancer, 6(1), 24–37. doi:10.1038/nrc1782.

    PubMed  Google Scholar 

  • de Vrij, J., Maas, S. L., Kwappenberg, K. M., Schnoor, R., Kleijn, A., Dekker, L., et al. (2015). Glioblastoma-derived extracellular vesicles modify the phenotype of monocytic cells. International Journal of Cancer,. doi:10.1002/ijc.29521.

    Google Scholar 

  • Desbaillets, I., Tada, M., de Tribolet, N., Diserens, A. C., Hamou, M. F., & Van Meir, E. G. (1994). Human astrocytomas and glioblastomas express monocyte chemoattractant protein-1 (MCP-1) in vivo and in vitro. International Journal of Cancer, 58(2), 240–247.

    CAS  Google Scholar 

  • Diao, J., Yang, X., Song, X., Chen, S., He, Y., Wang, Q., et al. (2015). Exosomal Hsp70 mediates immunosuppressive activity of the myeloid-derived suppressor cells via phosphorylation of Stat3. Medical Oncology, 32(2), 453. doi:10.1007/s12032-014-0453-2.

    PubMed  Google Scholar 

  • Dimitrov, L., Hong, C. S., Yang, C., Zhuang, Z., & Heiss, J. D. (2015). New developments in the pathogenesis and therapeutic targeting of the IDH1 mutation in glioma. Int J Med Sci, 12(3), 201–213. doi:10.7150/ijms.11047.

    PubMed Central  PubMed  Google Scholar 

  • Dolecek, T. A., Propp, J. M., Stroup, N. E., & Kruchko, C. (2012). CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncology, 14(Suppl 5), v1–v49. doi:10.1093/neuonc/nos218.

    PubMed Central  PubMed  Google Scholar 

  • Doucette, T., Rao, G., Rao, A., Shen, L., Aldape, K., Wei, J., et al. (2013). Immune heterogeneity of glioblastoma subtypes: Extrapolation from the cancer genome atlas. Cancer Immunologic Research, 1(2), 112–122. doi:10.1158/2326-6066.CIR-13-0028.

    CAS  Google Scholar 

  • Dunn, G. P., Andronesi, O. C., & Cahill, D. P. (2013). From genomics to the clinic: Biological and translational insights of mutant IDH1/2 in glioma. Neurosurgical Focus, 34(2), E2. doi:10.3171/2012.12.FOCUS12355.

    PubMed  Google Scholar 

  • Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The three Es of cancer immunoediting. Annual Review of Immunology, 22, 329–360. doi:10.1146/annurev.immunol.22.012703.104803.

    CAS  PubMed  Google Scholar 

  • Eisele, G., Wischhusen, J., Mittelbronn, M., Meyermann, R., Waldhauer, I., Steinle, A., et al. (2006). TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain, 129(Pt 9), 2416–2425. doi:10.1093/brain/awl205.

    PubMed  Google Scholar 

  • Ekstrand, A. J., Sugawa, N., James, C. D., & Collins, V. P. (1992). Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proceedings of the National Academy of Sciences, 89(10), 4309–4313.

    CAS  Google Scholar 

  • Fowler, A., Thomson, D., Giles, K., Maleki, S., Mreich, E., Wheeler, H., et al. (2011). miR-124a is frequently down-regulated in glioblastoma and is involved in migration and invasion. European Journal of Cancer, 47(6), 953–963. doi:10.1016/j.ejca.2010.11.026.

    CAS  PubMed  Google Scholar 

  • Friese, M. A., Wischhusen, J., Wick, W., Weiler, M., Eisele, G., Steinle, A., et al. (2004). RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Research, 64(20), 7596–7603. doi:10.1158/0008-5472.CAN-04-1627.

    CAS  PubMed  Google Scholar 

  • Frosina, G. (2009). DNA repair and resistance of gliomas to chemotherapy and radiotherapy. Molecular Cancer Research, 7(7), 989–999. doi:10.1158/1541-7786.MCR-09-0030.

    CAS  PubMed  Google Scholar 

  • Gabrilovich, D. I., Ostrand-Rosenberg, S., & Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nature Reviews Immunology, 12(4), 253–268. doi:10.1038/nri3175.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Galea, I., Bechmann, I., & Perry, V. H. (2007a). What is immune privilege (not)? Trends in Immunology, 28(1), 12–18. doi:10.1016/j.it.2006.11.004.

    CAS  PubMed  Google Scholar 

  • Galea, I., Bernardes-Silva, M., Forse, P. A., van Rooijen, N., Liblau, R. S., & Perry, V. H. (2007b). An antigen-specific pathway for CD8 T cells across the blood–brain barrier. Journal of Experimental Medicine, 204(9), 2023–2030. doi:10.1084/jem.20070064.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., De Vitis, S., et al. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Research, 64(19), 7011–7021. doi:10.1158/0008-5472.CAN-04-1364.

    CAS  PubMed  Google Scholar 

  • Gallina, G., Dolcetti, L., Serafini, P., De Santo, C., Marigo, I., Colombo, M. P., et al. (2006). Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. Journal of Clinical Investigation, 116(10), 2777–2790. doi:10.1172/JCI28828.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gedeon, P. C., Choi, B. D., Sampson, J. H., & Bigner, D. D. (2013). Rindopepimut: anti-EGFRvIII peptide vaccine, oncolytic. Drugs Future, 38(3), 147–155. doi:10.1358/dof.2013.038.03.1933992.

    PubMed Central  PubMed  Google Scholar 

  • Giometto, B., Bozza, F., Faresin, F., Alessio, L., Mingrino, S., & Tavolato, B. (1996). Immune infiltrates and cytokines in gliomas. Acta Neurochirurgica, 138(1), 50–56.

    CAS  PubMed  Google Scholar 

  • Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883–899. doi:10.1016/j.cell.2010.01.025.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Han, S., Zhang, C., Li, Q., Dong, J., Liu, Y., Huang, Y., et al. (2014). Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. British Journal of Cancer, 110(10), 2560–2568. doi:10.1038/bjc.2014.162.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Han, L., Zhang, K., Shi, Z., Zhang, J., Zhu, J., Zhu, S., et al. (2012). LncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. International Journal of Oncology, 40(6), 2004–2012. doi:10.3892/ijo.2012.1413.

    CAS  PubMed  Google Scholar 

  • Heimberger, A. B., Abou-Ghazal, M., Reina-Ortiz, C., Yang, D. S., Sun, W., Qiao, W., et al. (2008). Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clinical Cancer Research, 14(16), 5166–5172. doi:10.1158/1078-0432.CCR-08-0320.

    CAS  PubMed  Google Scholar 

  • Hickey, W. F., Hsu, B. L., & Kimura, H. (1991). T-lymphocyte entry into the central nervous system. Journal of Neuroscience Research, 28(2), 254–260. doi:10.1002/jnr.490280213.

    CAS  PubMed  Google Scholar 

  • Hoffmann, P., Hofmeister, R., Brischwein, K., Brandl, C., Crommer, S., Bargou, R., et al. (2005). Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. International Journal of Cancer, 115(1), 98–104. doi:10.1002/ijc.20908.

    CAS  Google Scholar 

  • Holliger, P., & Hudson, P. J. (2005). Engineered antibody fragments and the rise of single domains. Nature Biotechnology, 23(9), 1126–1136. doi:10.1038/nbt1142.

    CAS  PubMed  Google Scholar 

  • Horing, E., Podlech, O., Silkenstedt, B., Rota, I. A., Adamopoulou, E., & Naumann, U. (2013). The histone deacetylase inhibitor trichostatin a promotes apoptosis and antitumor immunity in glioblastoma cells. Anticancer Research, 33(4), 1351–1360.

    PubMed  Google Scholar 

  • Huettner, C., Czub, S., Kerkau, S., Roggendorf, W., & Tonn, J. C. (1997). Interleukin 10 is expressed in human gliomas in vivo and increases glioma cell proliferation and motility in vitro. Anticancer Research, 17(5A), 3217–3224.

    CAS  PubMed  Google Scholar 

  • Jacobs, J. F., Idema, A. J., Bol, K. F., Grotenhuis, J. A., de Vries, I. J., Wesseling, P., et al. (2010). Prognostic significance and mechanism of Treg infiltration in human brain tumors. Journal of Neuroimmunology, 225(1–2), 195–199. doi:10.1016/j.jneuroim.2010.05.020.

    CAS  PubMed  Google Scholar 

  • Jena, B., Dotti, G., & Cooper, L. J. (2010). Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood, 116(7), 1035–1044. doi:10.1182/blood-2010-01-043737.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jha, P., Agrawal, R., Pathak, P., Kumar, A., Purkait, S., Mallik, S., et al. (2015). Genome-wide small noncoding RNA profiling of pediatric high-grade gliomas reveals deregulation of several miRNAs, identifies downregulation of snoRNA cluster HBII-52 and delineates H3F3A and TP53 mutant-specific miRNAs and snoRNAs. International Journal of Cancer,. doi:10.1002/ijc.29610.

    Google Scholar 

  • Jia, W., Jackson-Cook, C., & Graf, M. R. (2010). Tumor-infiltrating, myeloid-derived suppressor cells inhibit T cell activity by nitric oxide production in an intracranial rat glioma + vaccination model. Journal of Neuroimmunology, 223(1–2), 20–30. doi:10.1016/j.jneuroim.2010.03.011.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kapranov, P., Cheng, J., Dike, S., Nix, D. A., Duttagupta, R., Willingham, A. T., et al. (2007). RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 316(5830), 1484–1488. doi:10.1126/science.1138341.

    CAS  PubMed  Google Scholar 

  • Kapranov, P., St Laurent, G., Raz, T., Ozsolak, F., Reynolds, C. P., Sorensen, P. H., et al. (2010). The majority of total nuclear-encoded non-ribosomal RNA in a human cell is ‘dark matter’ un-annotated RNA. BMC Biology, 8, 149. doi:10.1186/1741-7007-8-149.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kefas, B., Godlewski, J., Comeau, L., Li, Y., Abounader, R., Hawkinson, M., et al. (2008). microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Research, 68(10), 3566–3572. doi:10.1158/0008-5472.CAN-07-6639.

    CAS  PubMed  Google Scholar 

  • Kim, Y. Z. (2014). Altered histone modifications in gliomas. Brain Tumor Research and Treatment, 2(1), 7–21. doi:10.14791/btrt.2014.2.1.7.

    PubMed Central  PubMed  Google Scholar 

  • Kim, H. J., & Bae, S. C. (2011). Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anti-cancer drugs. American Journal of Translational Research, 3(2), 166–179.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim, Y. H., Jung, T. Y., Jung, S., Jang, W. Y., Moon, K. S., Kim, I. Y., et al. (2012). Tumour-infiltrating T-cell subpopulations in glioblastomas. British Journal of Neurosurgery, 26(1), 21–27. doi:10.3109/02688697.2011.584986.

    PubMed  Google Scholar 

  • Kim, S., Takahashi, H., Lin, W. W., Descargues, P., Grivennikov, S., Kim, Y., et al. (2009). Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature, 457(7225), 102–106. doi:10.1038/nature07623.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kipriyanov, S. M., & Le Gall, F. (2004). Recent advances in the generation of bispecific antibodies for tumor immunotherapy. Current Opinion in Drug Discovery & Development, 7(2), 233–242.

    CAS  Google Scholar 

  • Kohanbash, G., McKaveney, K., Sakaki, M., Ueda, R., Mintz, A. H., Amankulor, N., et al. (2013). GM-CSF promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor-alpha. Cancer Research, 73(21), 6413–6423. doi:10.1158/0008-5472.CAN-12-4124.

    CAS  PubMed  Google Scholar 

  • Kong, S., Sengupta, S., Tyler, B., Bais, A. J., Ma, Q., Doucette, S., et al. (2012). Suppression of human glioma xenografts with second-generation IL13R-specific chimeric antigen receptor-modified T cells. Clinical Cancer Research, 18(21), 5949–5960. doi:10.1158/1078-0432.CCR-12-0319.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krebs, S., Rodriguez-Cruz, T. G., Derenzo, C., & Gottschalk, S. (2013). Genetically modified T cells to target glioblastoma. Frontiers in Oncology, 3, 322. doi:10.3389/fonc.2013.00322.

    PubMed Central  PubMed  Google Scholar 

  • Kren, L., Muckova, K., Lzicarova, E., Sova, M., Vybihal, V., Svoboda, T., et al. (2010). Production of immune-modulatory nonclassical molecules HLA-G and HLA-E by tumor infiltrating ameboid microglia/macrophages in glioblastomas: A role in innate immunity? Journal of Neuroimmunology, 220(1–2), 131–135. doi:10.1016/j.jneuroim.2010.01.014.

    CAS  PubMed  Google Scholar 

  • Lanier, L. L. (2003). Natural killer cell receptor signaling. Current Opinion in Immunology, 15(3), 308–314.

    CAS  PubMed  Google Scholar 

  • Lee, J., Son, M. J., Woolard, K., Donin, N. M., Li, A., Cheng, C. H., et al. (2008). Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell, 13(1), 69–80. doi:10.1016/j.ccr.2007.12.005.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li, C. C., Eaton, S. A., Young, P. E., Lee, M., Shuttleworth, R., Humphreys, D. T., et al. (2013). Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biology, 10(8), 1333–1344. doi:10.4161/rna.25281.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li, Z., Zhang, L. J., Zhang, H. R., Tian, G. F., Tian, J., Mao, X. L., et al. (2014). Tumor-derived transforming growth factor-beta is critical for tumor progression and evasion from immune surveillance. Asian Pacific Journal of Cancer Prevention, 15(13), 5181–5186.

    PubMed  Google Scholar 

  • Lin, W. W., & Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation, 117(5), 1175–1183. doi:10.1172/JCI31537.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu, S., Sun, J., & Lan, Q. (2014). Glioblastoma microvesicles promote endothelial cell proliferation through Akt/beta-catenin pathway. International Journal of Clinical and Experimental Pathology, 7(8), 4857–4866.

    PubMed Central  PubMed  Google Scholar 

  • Liu, G., Yuan, X., Zeng, Z., Tunici, P., Ng, H., Abdulkadir, I. R., et al. (2006). Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Molecular Cancer, 5, 67. doi:10.1186/1476-4598-5-67.

    PubMed Central  PubMed  Google Scholar 

  • Lucio-Eterovic, A. K., Cortez, M. A., Valera, E. T., Motta, F. J., Queiroz, R. G., Machado, H. R., et al. (2008). Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: Class II and IV are hypoexpressed in glioblastomas. BMC Cancer, 8, 243. doi:10.1186/1471-2407-8-243.

    PubMed Central  PubMed  Google Scholar 

  • Mantovani, A., & Sica, A. (2010). Macrophages, innate immunity and cancer: Balance, tolerance, and diversity. Current Opinion in Immunology, 22(2), 231–237. doi:10.1016/j.coi.2010.01.009.

    CAS  PubMed  Google Scholar 

  • Mantovani, A., Sica, A., Allavena, P., Garlanda, C., & Locati, M. (2009). Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Human Immunology, 70(5), 325–330. doi:10.1016/j.humimm.2009.02.008.

    CAS  PubMed  Google Scholar 

  • Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23(11), 549–555.

    CAS  PubMed  Google Scholar 

  • Martins, V. R., Dias, M. S., & Hainaut, P. (2013). Tumor-cell-derived microvesicles as carriers of molecular information in cancer. Current Opinion in Oncology, 25(1), 66–75. doi:10.1097/CCO.0b013e32835b7c81.

    CAS  PubMed  Google Scholar 

  • McLendon, R., Friedman, A., Bigner, D., Van Meir, E. G., Brat, D. J., Mastrogianakis, G. M., et al. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068. doi:10.1038/nature07385.

    CAS  Google Scholar 

  • Mendell, J. T. (2005). MicroRNAs: Critical regulators of development, cellular physiology and malignancy. Cell Cycle, 4(9), 1179–1184.

    CAS  PubMed  Google Scholar 

  • Mirghorbani, M., Van Gool, S., & Rezaei, N. (2013). Myeloid-derived suppressor cells in glioma. Expert Review of Neurotherapeutics, 13(12), 1395–1406. doi:10.1586/14737175.2013.857603.

    CAS  PubMed  Google Scholar 

  • Mittal, D., Gubin, M. M., Schreiber, R. D., & Smyth, M. J. (2014). New insights into cancer immunoediting and its three component phases–elimination, equilibrium and escape. Current Opinion in Immunology, 27, 16–25. doi:10.1016/j.coi.2014.01.004.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mohme, M., Neidert, M. C., Regli, L., Weller, M., & Martin, R. (2014). Immunological challenges for peptide-based immunotherapy in glioblastoma. Cancer Treatment Reviews, 40(2), 248–258. doi:10.1016/j.ctrv.2013.08.008.

    CAS  PubMed  Google Scholar 

  • Morgan, R. A., Yang, J. C., Kitano, M., Dudley, M. E., Laurencot, C. M., & Rosenberg, S. A. (2010). Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Molecular Therapy, 18(4), 843–851. doi:10.1038/mt.2010.24.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muturi, H. T., Dreesen, J. D., Nilewski, E., Jastrow, H., Giebel, B., Ergun, S., et al. (2013). Tumor and endothelial cell-derived microvesicles carry distinct CEACAMs and influence T-cell behavior. PLoS ONE, 8(9), e74654. doi:10.1371/journal.pone.0074654.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nagy, A., Eder, K., Selak, M. A., & Kalman, B. (2015). Mitochondrial energy metabolism and apoptosis regulation in glioblastoma. Brain Research, 1595, 127–142. doi:10.1016/j.brainres.2014.10.062.

    CAS  PubMed  Google Scholar 

  • Nickoloff, B. J., Ben-Neriah, Y., & Pikarsky, E. (2005). Inflammation and cancer: Is the link as simple as we think?. Journal of Investigative Dermatology, 124(6), x–xiv. doi:10.1111/j.0022-202X.2005.23724.x.

  • Ohno, M., Ohkuri, T., Kosaka, A., Tanahashi, K., June, C. H., Natsume, A., et al. (2013). Expression of miR-17-92 enhances anti-tumor activity of T-cells transduced with the anti-EGFRvIII chimeric antigen receptor in mice bearing human GBM xenografts. Journal of Immunotheraphy Cancer, 1, 21. doi:10.1186/2051-1426-1-21.

    Google Scholar 

  • Okano, M., Xie, S., & Li, E. (1998). Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genetics, 19(3), 219–220. doi:10.1038/890.

    CAS  PubMed  Google Scholar 

  • Omuro, A., & DeAngelis, L. M. (2013). Glioblastoma and other malignant gliomas: A clinical review. JAMA, 310(17), 1842–1850. doi:10.1001/jama.2013.280319.

    CAS  PubMed  Google Scholar 

  • Ooi, Y. C., Tran, P., Ung, N., Thill, K., Trang, A., Fong, B. M., et al. (2014). The role of regulatory T-cells in glioma immunology. Clinical Neurology and Neurosurgery, 119, 125–132. doi:10.1016/j.clineuro.2013.12.004.

    PubMed  Google Scholar 

  • Ostrand-Rosenberg, S., & Sinha, P. (2009). Myeloid-derived suppressor cells: Linking inflammation and cancer. J Immunol, 182(8), 4499–4506. doi:10.4049/jimmunol.0802740.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Papagiannakopoulos, T., Shapiro, A., & Kosik, K. S. (2008). MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Research, 68(19), 8164–8172. doi:10.1158/0008-5472.CAN-08-1305.

    CAS  PubMed  Google Scholar 

  • Parolini, S., Santoro, A., Marcenaro, E., Luini, W., Massardi, L., Facchetti, F., et al. (2007). The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood, 109(9), 3625–3632. doi:10.1182/blood-2006-08-038844.

    CAS  PubMed  Google Scholar 

  • Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J., Angenendt, P., et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science, 321(5897), 1807–1812. doi:10.1126/science.1164382.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Patel, M. A., Kim, J. E., Ruzevick, J., Li, G., & Lim, M. (2014). The future of glioblastoma therapy: Synergism of standard of care and immunotherapy. Cancers (Basel), 6(4), 1953–1985. doi:10.3390/cancers6041953.

    CAS  Google Scholar 

  • Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F., Soriano, R. H., Wu, T. D., et al. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 9(3), 157–173. doi:10.1016/j.ccr.2006.02.019.

    CAS  PubMed  Google Scholar 

  • Plautz, G. E., Barnett, G. H., Miller, D. W., Cohen, B. H., Prayson, R. A., Krauss, J. C., et al. (1998). Systemic T cell adoptive immunotherapy of malignant gliomas. Journal of Neurosurgery, 89(1), 42–51. doi:10.3171/jns.1998.89.1.0042.

    CAS  PubMed  Google Scholar 

  • Plautz, G. E., Miller, D. W., Barnett, G. H., Stevens, G. H., Maffett, S., Kim, J., et al. (2000). T cell adoptive immunotherapy of newly diagnosed gliomas. Clinical Cancer Research, 6(6), 2209–2218.

    CAS  PubMed  Google Scholar 

  • Polyak, K., & Hahn, W. C. (2006). Roots and stems: Stem cells in cancer. Nature Medicine, 12(3), 296–300. doi:10.1038/nm1379.

    CAS  PubMed  Google Scholar 

  • Prins, R. M., Scott, G. P., Merchant, R. E., & Graf, M. R. (2002). Irradiated tumor cell vaccine for treatment of an established glioma. II. Expansion of myeloid suppressor cells that promote tumor progression. Cancer Immunology, Immunotherapy, 51(4), 190–199. doi:10.1007/s00262-002-0270-x.

    PubMed  Google Scholar 

  • Qian, B. Z., & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141(1), 39–51. doi:10.1016/j.cell.2010.03.014.

    CAS  PubMed  Google Scholar 

  • Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: Exosomes, microvesicles, and friends. Journal of Cell Biology, 200(4), 373–383. doi:10.1083/jcb.201211138.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A., & Ratajczak, M. Z. (2006). Membrane-derived microvesicles: Important and underappreciated mediators of cell-to-cell communication. Leukemia, 20(9), 1487–1495. doi:10.1038/sj.leu.2404296.

    CAS  PubMed  Google Scholar 

  • Reardon, D. A., Freeman, G., Wu, C., Chiocca, E. A., Wucherpfennig, K. W., Wen, P. Y., et al. (2014). Immunotherapy advances for glioblastoma. Neuro-Oncology, 16(11), 1441–1458. doi:10.1093/neuonc/nou212.

    PubMed Central  PubMed  Google Scholar 

  • Reardon, D. A., Wen, P. Y., Desjardins, A., Batchelor, T. T., & Vredenburgh, J. J. (2008). Glioblastoma multiforme: An emerging paradigm of anti-VEGF therapy. Expert Opinion Biological Therapy, 8(4), 541–553. doi:10.1517/14712598.8.4.541.

    CAS  Google Scholar 

  • Rodrigues, J. C., Gonzalez, G. C., Zhang, L., Ibrahim, G., Kelly, J. J., Gustafson, M. P., et al. (2010). Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro-Oncology, 12(4), 351–365. doi:10.1093/neuonc/nop023.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Romagnoli, G. G., Zelante, B. B., Toniolo, P. A., Migliori, I. K., & Barbuto, J. A. (2014). Dendritic cell-derived exosomes may be a tool for cancer immunotherapy by converting tumor cells into immunogenic targets. Frontiers in Immunology, 5, 692. doi:10.3389/fimmu.2014.00692.

    PubMed Central  PubMed  Google Scholar 

  • Ropero, S., & Esteller, M. (2007). The role of histone deacetylases (HDACs) in human cancer. Molecular Oncology, 1(1), 19–25. doi:10.1016/j.molonc.2007.01.001.

    CAS  PubMed  Google Scholar 

  • Roszman, T. L., & Brooks, W. H. (1980). Immunobiology of primary intracranial tumours. III. Demonstration of a qualitative lymphocyte abnormality in patients with primary brain tumours. Clinical and Experimental Immunology, 39(2), 395–402.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rutledge, W. C., Kong, J., Gao, J., Gutman, D. A., Cooper, L. A., Appin, C., et al. (2013). Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class. Clinical Cancer Research, 19(18), 4951–4960. doi:10.1158/1078-0432.CCR-13-0551.

    CAS  PubMed  Google Scholar 

  • Santiago-Dieppa, D. R., Steinberg, J., Gonda, D., Cheung, V. J., Carter, B. S., & Chen, C. C. (2014). Extracellular vesicles as a platform for ‘liquid biopsy’ in glioblastoma patients. Expert Review of Molecular Diagnostics, 14(7), 819–825. doi:10.1586/14737159.2014.943193.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sathornsumetee, S., Reardon, D. A., Desjardins, A., Quinn, J. A., Vredenburgh, J. J., & Rich, J. N. (2007). Molecularly targeted therapy for malignant glioma. Cancer, 110(1), 13–24. doi:10.1002/cncr.22741.

    PubMed  Google Scholar 

  • Schneider, S. W., Ludwig, T., Tatenhorst, L., Braune, S., Oberleithner, H., Senner, V., et al. (2004). Glioblastoma cells release factors that disrupt blood–brain barrier features. Acta Neuropathologica, 107(3), 272–276. doi:10.1007/s00401-003-0810-2.

    PubMed  Google Scholar 

  • Schreiber, R. D., Old, L. J., & Smyth, M. J. (2011). Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science, 331(6024), 1565–1570. doi:10.1126/science.1203486.

    CAS  PubMed  Google Scholar 

  • Schumacher, T., Bunse, L., Pusch, S., Sahm, F., Wiestler, B., Quandt, J., et al. (2014). A vaccine targeting mutant IDH1 induces antitumour immunity. Nature, 512(7514), 324–327. doi:10.1038/nature13387.

    CAS  PubMed  Google Scholar 

  • Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63(18), 5821–5828.

    CAS  PubMed  Google Scholar 

  • Sippel, T. R., White, J., Nag, K., Tsvankin, V., Klaassen, M., Kleinschmidt-DeMasters, B. K., et al. (2011). Neutrophil degranulation and immunosuppression in patients with GBM: Restoration of cellular immune function by targeting arginase I. Clinical Cancer Research, 17(22), 6992–7002. doi:10.1158/1078-0432.CCR-11-1107.

    CAS  PubMed  Google Scholar 

  • Skog, J., Wurdinger, T., van Rijn, S., Meijer, D. H., Gainche, L., Sena-Esteves, M., et al. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 10(12), 1470–1476. doi:10.1038/ncb1800.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soderberg, A., Barral, A. M., Soderstrom, M., Sander, B., & Rosen, A. (2007). Redox-signaling transmitted in trans to neighboring cells by melanoma-derived TNF-containing exosomes. Free Radical Biology and Medicine, 43(1), 90–99. doi:10.1016/j.freeradbiomed.2007.03.026.

    PubMed  Google Scholar 

  • Taft, R. J., Pang, K. C., Mercer, T. R., Dinger, M., & Mattick, J. S. (2010). Non-coding RNAs: reguLators of disease. The Journal of Pathology, 220(2), 126–139. doi:10.1002/path.2638.

    CAS  PubMed  Google Scholar 

  • Tanaka, S., Louis, D. N., Curry, W. T., Batchelor, T. T., & Dietrich, J. (2013). Diagnostic and therapeutic avenues for glioblastoma: No longer a dead end? Nature Reviews Clinical Oncology, 10(1), 14–26. doi:10.1038/nrclinonc.2012.204.

    CAS  PubMed  Google Scholar 

  • Tran, T. T., Uhl, M., Ma, J. Y., Janssen, L., Sriram, V., Aulwurm, S., et al. (2007). Inhibiting TGF-beta signaling restores immune surveillance in the SMA-560 glioma model. Neuro-Oncology, 9(3), 259–270. doi:10.1215/15228517-2007-010.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M. D., et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 17(1), 98–110. doi:10.1016/j.ccr.2009.12.020.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Verschuere, T., Toelen, J., Maes, W., Poirier, F., Boon, L., Tousseyn, T., et al. (2014). Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity. International Journal of Cancer, 134(4), 873–884. doi:10.1002/ijc.28426.

    CAS  Google Scholar 

  • Wainwright, D. A., Balyasnikova, I. V., Chang, A. L., Ahmed, A. U., Moon, K. S., Auffinger, B., et al. (2012). IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clinical Cancer Research, 18(22), 6110–6121. doi:10.1158/1078-0432.CCR-12-2130.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Waldhauer, I., & Steinle, A. (2008). NK cells and cancer immunosurveillance. Oncogene, 27(45), 5932–5943. doi:10.1038/onc.2008.267.

    CAS  PubMed  Google Scholar 

  • Wastowski, I. J., Simoes, R. T., Yaghi, L., Donadi, E. A., Pancoto, J. T., Poras, I., et al. (2013). Human leukocyte antigen-G is frequently expressed in glioblastoma and may be induced in vitro by combined 5-aza-2′-deoxycytidine and interferon-gamma treatments: results from a multicentric study. American Journal of Pathology, 182(2), 540–552. doi:10.1016/j.ajpath.2012.10.021.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watters, J. J., Schartner, J. M., & Badie, B. (2005). Microglia function in brain tumors. Journal of Neuroscience Research, 81(3), 447–455. doi:10.1002/jnr.20485.

    CAS  PubMed  Google Scholar 

  • Waziri, A., Killory, B., Ogden, A. T., I. I. I., Canoll, P., Anderson, R. C., Kent, S. C., et al. (2008). Preferential in situ CD4+ CD56+ T cell activation and expansion within human glioblastoma. The Journal of Immunology, 180(11), 7673–7680.

    CAS  PubMed  Google Scholar 

  • Wei, J., Barr, J., Kong, L. Y., Wang, Y., Wu, A., Sharma, A. K., et al. (2010). Glioma-associated cancer-initiating cells induce immunosuppression. Clinical Cancer Research, 16(2), 461–473. doi:10.1158/1078-0432.CCR-09-1983.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weller, M., & Fontana, A. (1995). The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-beta, T-cell apoptosis, and the immune privilege of the brain. Brain Research. Brain Research Reviews, 21(2), 128–151.

    CAS  PubMed  Google Scholar 

  • Wick, W., Naumann, U., & Weller, M. (2006). Transforming growth factor-beta: A molecular target for the future therapy of glioblastoma. Current Pharmaceutical Design, 12(3), 341–349.

    CAS  PubMed  Google Scholar 

  • Wiendl, H., Mitsdoerffer, M., Hofmeister, V., Wischhusen, J., Bornemann, A., Meyermann, R., et al. (2002). A functional role of HLA-G expression in human gliomas: An alternative strategy of immune escape. The Journal of Immunology, 168(9), 4772–4780.

    CAS  PubMed  Google Scholar 

  • Woodworth, G. F., Dunn, G. P., Nance, E. A., Hanes, J., & Brem, H. (2014). Emerging insights into barriers to effective brain tumor therapeutics. Frontiers in Oncology, 4, 126. doi:10.3389/fonc.2014.00126.

    PubMed Central  PubMed  Google Scholar 

  • Wu, A., Wei, J., Kong, L. Y., Wang, Y., Priebe, W., Qiao, W., et al. (2010). Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-Oncology, 12(11), 1113–1125. doi:10.1093/neuonc/noq082.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wurdinger, T., Deumelandt, K., van der Vliet, H. J., Wesseling, P., & de Gruijl, T. D. (2014). Mechanisms of intimate and long-distance cross-talk between glioma and myeloid cells: How to break a vicious cycle. Biochimica et Biophysica Acta, 1846(2), 560–575. doi:10.1016/j.bbcan.2014.10.003.

    CAS  PubMed  Google Scholar 

  • Yang, I., Han, S. J., Kaur, G., Crane, C., & Parsa, A. T. (2010). The role of microglia in central nervous system immunity and glioma immunology. Journal of Clinical Neuroscience, 17(1), 6–10. doi:10.1016/j.jocn.2009.05.006.

    PubMed Central  PubMed  Google Scholar 

  • Yang, I., Han, S. J., Sughrue, M. E., Tihan, T., & Parsa, A. T. (2011). Immune cell infiltrate differences in pilocytic astrocytoma and glioblastoma: Evidence of distinct immunological microenvironments that reflect tumor biology. Journal of Neurosurgery, 115(3), 505–511. doi:10.3171/2011.4.JNS101172.

    CAS  PubMed  Google Scholar 

  • Yao, Y., Ma, J., Xue, Y., Wang, P., Li, Z., Liu, J., et al. (2015). Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152. Cancer Letters, 359(1), 75–86. doi:10.1016/j.canlet.2014.12.051.

    CAS  PubMed  Google Scholar 

  • Yeung, Y. T., McDonald, K. L., Grewal, T., & Munoz, L. (2013). Interleukins in glioblastoma pathophysiology: Implications for therapy. British Journal of Pharmacology, 168(3), 591–606. doi:10.1111/bph.12008.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang, X. Q., Sun, S., Lam, K. F., Kiang, K. M., Pu, J. K., Ho, A. S., et al. (2013). A long non-coding RNA signature in glioblastoma multiforme predicts survival. Neurobiology of Diseases, 58, 123–131. doi:10.1016/j.nbd.2013.05.011.

    CAS  Google Scholar 

  • Zhu, V. F., Yang, J., Lebrun, D. G., & Li, M. (2012). Understanding the role of cytokines in Glioblastoma Multiforme pathogenesis. Cancer Letters, 316(2), 139–150. doi:10.1016/j.canlet.2011.11.001.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are supported by the Markusovszky University Teaching Hospital and the University of Pecs. The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pecs, Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Eder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eder, K., Kalman, B. The Dynamics of Interactions Among Immune and Glioblastoma Cells. Neuromol Med 17, 335–352 (2015). https://doi.org/10.1007/s12017-015-8362-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-015-8362-x

Keywords

Navigation