Skip to main content

Immune Response: Glioma-Associated Immunosuppression

  • Chapter
  • First Online:
Glioma Cell Biology

Abstract

Gliomas such as glioblastoma have a complex relationship with the immune system. Glioblastomas have a harshly immunosuppressive microenvironment due in large part to the expression of multiple factors by tumor cells that inhibit T-cell responses. In addition, glioblastomas are heavily infiltrated with monocytic cells. These cells appear to have become immunosuppressive under the influence of the tumor and share characteristics with myeloid-derived suppressor cells. To a lesser degree, gliomas have T-cell infiltrates. Similarly, these largely appear to have adopted the immunosuppressive phenotype of regulatory T cells. Glioblastoma patients also have marked systemic immunosuppression characterized by globally reduced T-cell counts and impaired T-cell function coupled with increased circulating immunosuppressive regulatory T cells and myeloid-derived suppressor cells. The relationships between these various immunosuppressive cell populations, their impact on T cells, and their implications for immunotherapies are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Antigen-presenting cell

BBB:

Blood–brain barrier

CNS:

Central nervous system

CSF:

Colony-stimulating factor-1

EGFR:

Epidermal growth factor receptor

GBM:

Glioblastoma multiforme

HLA:

Human leukocyte antigen

IFN:

Interferon

IL:

Interleukin

LAK:

Lymphokine-activated killer cells

MDSC:

Myeloid-derived suppressor cell

MHC:

Major histocompatibility complex

PG:

Prostaglandin

PTEN:

Phosphatase and tensin homologue deleted from chromosome 10

RANTES:

Regulated on activation normal T cell expressed and secreted, CCL5

STAT:

Signal transducer and activator of transcription signal transduction and transcription

TGF:

Transforming growth factor

TIL:

Tumor-infiltrating lymphocytes

TNF:

Tumor necrosis factor

Treg :

Regulatory T cell

VEGF:

Vascular endothelial cell growth factor

References

  • Abbas AK, Lichtman AH (2005a) General properties of immune responses. Elsevier Saunders, Philadelphia, PA

    Google Scholar 

  • Abbas AK, Lichtman AH (2005b) Activation of T lymphocytes. Elsevier Saunders, Philadelphia, PA

    Google Scholar 

  • Aloisi F, Ria F, Penna G, Adorini L (1998) Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation. J Immunol 160:4671–4680

    CAS  PubMed  Google Scholar 

  • Aloisi F, Ria F, Columba-Cabezas S, Hess H, Penna G, Adorini L (1999) Relative efficiency of microglia, astrocytes, dendritic cells and B cells in naive CD4+ T cell priming and Th1/Th2 cell restimulation. Eur J Immunol 29:2705–2714

    CAS  PubMed  Google Scholar 

  • Barba D, Saris SC, Holder C, Rosenberg SA, Oldfield EH (1989) Intratumoral LAK cell and interleukin-2 therapy of human gliomas. J Neurosurg 70:175–182

    CAS  PubMed  Google Scholar 

  • Barshes NR, Goodpastor SE, Goss JA (2004) Pharmacologic immunosuppression. Front Biosci 9:411–420

    CAS  PubMed  Google Scholar 

  • Bender AM, Collier LS, Rodriguez FJ et al (2010) Sleeping beauty-mediated somatic mutagenesis implicates CSF1 in the formation of high-grade astrocytomas. Cancer Res 70:3557–3565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benedetti S, Pirola B, Pollo B et al (2000) Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 6:447–450

    CAS  PubMed  Google Scholar 

  • Bigner DD, Brown MT, Friedman AH et al (1998) Iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with recurrent malignant gliomas: phase I trial results. J Clin Oncol 16:2202–2212

    CAS  PubMed  Google Scholar 

  • Bourdon MA, Wikstrand CJ, Furthmayr H, Matthews TJ, Bigner DD (1983) Human glioma-mesenchymal extracellular matrix antigen defined by monoclonal antibody. Cancer Res 43:2796–2805

    CAS  PubMed  Google Scholar 

  • Brannan CA, Roberts MR (2004) Resident microglia from adult mice are refractory to nitric oxide-inducing stimuli due to impaired NOS2 gene expression. Glia 48:120–131

    PubMed  Google Scholar 

  • Brock CS, Newlands ES, Wedge SR et al (1998) Phase I trial of temozolomide using an extended continuous oral schedule. Cancer Res 58:4363–4367

    CAS  PubMed  Google Scholar 

  • Brooks WH, Netsky MG, Normansell DE, Horwitz DA (1972) Depressed cell-mediated immunity in patients with primary intracranial tumors. Characterization of a humoral immunosuppressive factor. J Exp Med 136:1631–1647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks WH, Caldwell HD, Mortara RH (1974) Immune responses in patients with gliomas. Surg Neurol 2:419–423

    CAS  PubMed  Google Scholar 

  • Brooks WH, Roszman TL, Rogers AS (1976) Impairment of rosette-forming T lymphocytes in patients with primary intracranial tumors. Cancer 37:1869–1873

    CAS  PubMed  Google Scholar 

  • Brown MT, Coleman RE, Friedman AH et al (1996) Intrathecal 131I-labeled antitenascin monoclonal antibody 81C6 treatment of patients with leptomeningeal neoplasms or primary brain tumor resection cavities with subarachnoid communication: phase I trial results. Clin Cancer Res 2:963–972

    CAS  PubMed  Google Scholar 

  • Buckner JC, Schomberg PJ, McGinnis WL et al (2001) A phase III study of radiation therapy plus carmustine with or without recombinant interferon-alpha in the treatment of patients with newly diagnosed high-grade glioma. Cancer 92:420–433

    CAS  PubMed  Google Scholar 

  • Camara NO, Sebille F, Lechler RI (2003) Human CD4+ CD25+ regulatory cells have marked and sustained effects on CD8+ T cell activation. Eur J Immunol 33:3473–3483

    CAS  PubMed  Google Scholar 

  • Chamberlain MC (2002) A phase II trial of intra-cerebrospinal fluid alpha interferon in the treatment of neoplastic meningitis. Cancer 94:2675–2680

    CAS  PubMed  Google Scholar 

  • Cheever MA, Allison JP, Ferris AS et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337

    PubMed  Google Scholar 

  • Cheng F, Wang HW, Cuenca A et al (2003) A critical role for Stat3 signaling in immune tolerance. Immunity 19:425–436

    CAS  PubMed  Google Scholar 

  • Crane CA, Ahn BJ, Han SJ, Parsa AT (2012) Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and expansion of regulatory T cells: implications for immunotherapy. Neuro Oncol 14:584–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cserr HF, Knopf PM (1992) Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 13:507–512

    CAS  PubMed  Google Scholar 

  • Dieckmann D, Bruett CH, Ploettner H, Lutz MB, Schuler G (2002) Human CD4(+)CD25(+) regulatory, contact-dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells [corrected]. J Exp Med 196:247–253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dix AR, Brooks WH, Roszman TL, Morford LA (1999) Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 100:216–232

    CAS  PubMed  Google Scholar 

  • Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    CAS  PubMed  Google Scholar 

  • Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS (2002) The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res 62:5657–5663

    CAS  PubMed  Google Scholar 

  • El Andaloussi A, Lesniak MS (2006) An increase in CD4+ CD25+ FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro Oncol 8:234–243

    PubMed  PubMed Central  Google Scholar 

  • El Andaloussi A, Han Y, Lesniak MS (2006) Prolongation of survival following depletion of CD4+ CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg 105:430–437

    PubMed  Google Scholar 

  • Elliott LH, Brooks WH, Roszman TL (1984) Cytokinetic basis for the impaired activation of lymphocytes from patients with primary intracranial tumors. J Immunol 132:1208–1215

    CAS  PubMed  Google Scholar 

  • Elliott LH, Brooks WH, Roszman TL (1987) Activation of immunoregulatory lymphocytes obtained from patients with malignant gliomas. J Neurosurg 67:231–236

    CAS  PubMed  Google Scholar 

  • Elliott LH, Brooks WH, Roszman TL (1990) Inability of mitogen-activated lymphocytes obtained from patients with malignant primary intracranial tumors to express high affinity interleukin 2 receptors. J Clin Invest 86:80–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Facoetti A, Nano R, Zelini P et al (2005) Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin Cancer Res 11:8304–8311

    CAS  PubMed  Google Scholar 

  • Faillot T, Magdelenat H, Mady E et al (1996) A phase I study of an anti-epidermal growth factor receptor monoclonal antibody for the treatment of malignant gliomas. Neurosurgery 39:478–483

    CAS  PubMed  Google Scholar 

  • Fakhrai H, Dorigo O, Shawler DL et al (1996) Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci U S A 93:2909–2914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farkkila M, Jaaskelainen J, Kallio M et al (1994) Randomised, controlled study of intratumoral recombinant gamma-interferon treatment in newly diagnosed glioblastoma. Br J Cancer 70:138–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer JP, Antel JP, Freedman M, Cashman NR, Rode H, Villemure JG (1989) Characterization of lymphoid cells isolated from human gliomas. J Neurosurg 71:528–533

    CAS  PubMed  Google Scholar 

  • Fecci PE, Mitchell DA, Whitesides JF et al (2006a) Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 66:3294–3302

    CAS  PubMed  Google Scholar 

  • Fecci PE, Sweeney AE, Grossi PM et al (2006b) Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin Cancer Res 12:4294–4305

    CAS  PubMed  Google Scholar 

  • Flugel A, Labeur MS, Grasbon-Frodl EM, Kreutzberg GW, Graeber MB (1999) Microglia only weakly present glioma antigen to cytotoxic T cells. Int J Dev Neurosci 17:547–556

    CAS  PubMed  Google Scholar 

  • Fontana A, Kristensen F, Dubs R, Gemsa D, Weber E (1982) Production of prostaglandin E and an interleukin-1 like factor by cultured astrocytes and C6 glioma cells. J Immunol 129:2413–2419

    CAS  PubMed  Google Scholar 

  • Francisco LM, Sage PT, Sharpe AH (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 236:219–242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952

    CAS  PubMed  Google Scholar 

  • Gan HK, Kaye AH, Luwor RB (2009) The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci 16:748–754

    CAS  PubMed  Google Scholar 

  • Gordon LB, Nolan SC, Cserr HF, Knopf PM, Harling-Berg CJ (1997) Growth of P511 mastocytoma cells in BALB/c mouse brain elicits CTL response without tumor elimination: a new tumor model for regional central nervous system immunity. J Immunol 159:2399–2408

    CAS  PubMed  Google Scholar 

  • Gustafson MP, Lin Y, New KC et al (2010) Systemic immune suppression in glioblastoma: the interplay between CD14+ HLA-DRlo/neg monocytes, tumor factors, and dexamethasone. Neuro Oncol 12:631–644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn HP, Pang M, He J et al (2004) Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death. Cell Death Differ 11:1277–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han SJ, Kaur G, Yang I, Lim M (2010) Biologic principles of immunotherapy for malignant gliomas. Neurosurg Clin N Am 21:1–16

    PubMed  Google Scholar 

  • Han SJ, Zygourakis C, Lim M, Parsa AT (2012) Immunotherapy for glioma: promises and challenges. Neurosurg Clin N Am 23:357–370

    PubMed  Google Scholar 

  • Hao C, Parney IF, Roa WH, Turner J, Petruk KC, Ramsay DA (2002) Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol 103:171–178

    CAS  PubMed  Google Scholar 

  • Hayes RL, Koslow M, Hiesiger EM et al (1995) Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer 76:840–852

    CAS  PubMed  Google Scholar 

  • Heimberger AB, Abou-Ghazal M, Reina-Ortiz C et al (2008a) Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res 14:5166–5172

    CAS  PubMed  Google Scholar 

  • Heimberger AB, Sun W, Hussain SF et al (2008b) Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: case study. Neuro Oncol 10:98–103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hickey WF (2001) Basic principles of immunological surveillance of the normal central nervous system. Glia 36:118–124

    CAS  PubMed  Google Scholar 

  • Hickey WF, Kimura H (1987) Graft-vs.-host disease elicits expression of class I and class II histocompatibility antigens and the presence of scattered T lymphocytes in rat central nervous system. Proc Natl Acad Sci U S A 84:2082–2086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260

    CAS  PubMed  Google Scholar 

  • Hitchcock ER, Morris CS (1988) Mononuclear cell infiltration in central portions of human astrocytomas. J Neurosurg 68:432–437

    CAS  PubMed  Google Scholar 

  • Hussain SF, Heimberger AB (2005) Immunotherapy for human glioma: innovative approaches and recent results. Expert Rev Anticancer Ther 5:777–790

    CAS  PubMed  Google Scholar 

  • Ichinose M, Masuoka J, Shiraishi T, Mineta T, Tabuchi K (2001) Fas ligand expression and depletion of T-cell infiltration in astrocytic tumors. Brain Tumor Pathol 18:37–42

    CAS  PubMed  Google Scholar 

  • Ishikawa E, Tsuboi K, Yamamoto T et al (2007) Clinical trial of autologous formalin-fixed tumor vaccine for glioblastoma multiforme patients. Cancer Sci 98:1226–1233

    CAS  PubMed  Google Scholar 

  • Jacobs JF, Idema AJ, Bol KF et al (2010) Prognostic significance and mechanism of Treg infiltration in human brain tumors. J Neuroimmunol 225:195–199

    CAS  PubMed  Google Scholar 

  • Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    CAS  PubMed  Google Scholar 

  • Janeway C, Travers P, Walport M, Schlomchik M (2005) Immunobiology: the immune system in health and disease. Garland Science, New York, NY

    Google Scholar 

  • Jereb B, Petric J, Lamovec J, Skrbec M, Soss E (1989) Intratumor application of human leukocyte interferon-alpha in patients with malignant brain tumors. Am J Clin Oncol 12:1–7

    CAS  PubMed  Google Scholar 

  • Kalofonos HP, Pawlikowska TR, Hemingway A et al (1989) Antibody guided diagnosis and therapy of brain gliomas using radiolabeled monoclonal antibodies against epidermal growth factor receptor and placental alkaline phosphatase. J Nucl Med 30:1636–1645

    CAS  PubMed  Google Scholar 

  • Khan RB, Raizer JJ, Malkin MG, Bazylewicz KA, Abrey LE (2002) A phase II study of extended low-dose temozolomide in recurrent malignant gliomas. Neuro Oncol 4:39–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi T, Joki T, Saitoh S et al (1999) Anti-tumor activity of interleukin-2-producing tumor cells and recombinant interleukin 12 against mouse glioma cells located in the central nervous system. Int J Cancer 80:425–430

    CAS  PubMed  Google Scholar 

  • Kikuchi T, Akasaki Y, Abe T et al (2004) Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother 27:452–459

    CAS  PubMed  Google Scholar 

  • Kostianovsky AM, Maier LM, Anderson RC, Bruce JN, Anderson DE (2008) Astrocytic regulation of human monocytic/microglial activation. J Immunol 181:5425–5432

    CAS  PubMed  Google Scholar 

  • Krakowski ML, Owens T (2000) Naive T lymphocytes traffic to inflamed central nervous system, but require antigen recognition for activation. Eur J Immunol 30:1002–1009

    CAS  PubMed  Google Scholar 

  • Kunicka JE, Talle MA, Denhardt GH, Brown M, Prince LA, Goldstein G (1993) Immunosuppression by glucocorticoids: inhibition of production of multiple lymphokines by in vivo administration of dexamethasone. Cell Immunol 149:39–49

    CAS  PubMed  Google Scholar 

  • Kuppner MC, Hamou MF, de Tribolet N (1988) Immunohistological and functional analyses of lymphoid infiltrates in human glioblastomas. Cancer Res 48:6926–6932

    CAS  PubMed  Google Scholar 

  • Kuppner MC, Hamou MF, Sawamura Y, Bodmer S, de Tribolet N (1989) Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor beta 2. J Neurosurg 71:211–217

    CAS  PubMed  Google Scholar 

  • Lampson LA, Hickey WF (1986) Monoclonal antibody analysis of MHC expression in human brain biopsies: tissue ranging from “histologically normal” to that showing different levels of glial tumor involvement. J Immunol 136:4054–4062

    CAS  PubMed  Google Scholar 

  • Levi-Strauss M, Mallat M (1987) Primary cultures of murine astrocytes produce C3 and factor B, two components of the alternative pathway of complement activation. J Immunol 139:2361–2366

    CAS  PubMed  Google Scholar 

  • Liau LM, Fakhrai H, Black KL (1998) Prolonged survival of rats with intracranial C6 gliomas by treatment with TGF-beta antisense gene. Neurol Res 20:742–747

    CAS  PubMed  Google Scholar 

  • Liau LM, Prins RM, Kiertscher SM et al (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11:5515–5525

    CAS  PubMed  Google Scholar 

  • Lillehei KO, Mitchell DH, Johnson SD, McCleary EL, Kruse CA (1991) Long-term follow-up of patients with recurrent malignant gliomas treated with adjuvant adoptive immunotherapy. Neurosurgery 28:16–23

    CAS  PubMed  Google Scholar 

  • Lin T, Bost KL (2004) STAT3 activation in macrophages following infection with Salmonella. Biochem Biophys Res Commun 321:828–834

    CAS  PubMed  Google Scholar 

  • Liu VC, Wong LY, Jang T et al (2007) Tumor evasion of the immune system by converting CD4+ CD25- T cells into CD4+ CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunol 178:2883–2892

    CAS  PubMed  Google Scholar 

  • Lowin-Kropf B, Shapiro VS, Weiss A (1998) Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism. J Cell Biol 140:861–871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matta BM, Raimondi G, Rosborough BR, Sumpter TL, Thomson AW (2012) IL-27 production and STAT3-dependent upregulation of B7-H1 mediate immune regulatory functions of liver plasmacytoid dendritic cells. J Immunol 188:5227–5237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medzhitov R, Janeway C Jr (2000) Innate immunity. N Engl J Med 343:338–344

    CAS  PubMed  Google Scholar 

  • Merchant RE, McVicar DW, Merchant LH, Young HF (1992) Treatment of recurrent malignant glioma by repeated intracerebral injections of human recombinant interleukin-2 alone or in combination with systemic interferon-alpha. Results of a phase I clinical trial. J Neurooncol 12:75–83

    CAS  PubMed  Google Scholar 

  • Mizuno M, Yoshida J (1998) Effect of human interferon beta gene transfer upon human glioma, transplanted into nude mouse brain, involves induced natural killer cells. Cancer Immunol Immunother 47:227–232

    CAS  PubMed  Google Scholar 

  • Nagaraj S, Gupta K, Pisarev V et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Natsume A, Mizuno M, Ryuke Y, Yoshida J (1999) Antitumor effect and cellular immunity activation by murine interferon-beta gene transfer against intracerebral glioma in mouse. Gene Ther 6:1626–1633

    CAS  PubMed  Google Scholar 

  • Nitta T, Hishii M, Sato K, Okumura K (1994) Selective expression of interleukin-10 gene within glioblastoma multiforme. Brain Res 649:122–128

    CAS  PubMed  Google Scholar 

  • O’Farrell AM, Liu Y, Moore KW, Mui AL (1998) IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO J 17:1006–1018

    PubMed  PubMed Central  Google Scholar 

  • Okada H, Lieberman FS, Walter KA et al (2007) Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas. J Transl Med 5:67

    PubMed  PubMed Central  Google Scholar 

  • Parney IF, Farr-Jones MA, Chang LJ, Petruk KC (2000) Human glioma immunobiology in vitro: implications for immunogene therapy. Neurosurgery 46:1169–1177, discussion 1177–1168

    CAS  PubMed  Google Scholar 

  • Parney IF, Waldron JS, Parsa AT (2009) Flow cytometry and in vitro analysis of human glioma-associated macrophages. Laboratory investigation. J Neurosurg 110:572–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parsa AT, Waldron JS, Panner A et al (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13:84–88

    CAS  PubMed  Google Scholar 

  • Reardon DA, Akabani G, Coleman RE et al (2006a) Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: phase II study results. J Clin Oncol 24:115–122

    CAS  PubMed  Google Scholar 

  • Reardon DA, Quinn JA, Akabani G et al (2006b) Novel human IgG2b/murine chimeric antitenascin monoclonal antibody construct radiolabeled with 131I and administered into the surgically created resection cavity of patients with malignant glioma: phase I trial results. J Nucl Med 47:912–918

    CAS  PubMed  Google Scholar 

  • Rodrigues JC, Gonzalez GC, Zhang L et al (2010) Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro Oncol 12:351–365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roszman TL, Brooks WH, Elliott LH (1982) Immunobiology of primary intracranial tumors. VI. Suppressor cell function and lectin-binding lymphocyte subpopulations in patients with cerebral tumors. Cancer 50:1273–1279

    CAS  PubMed  Google Scholar 

  • Roszman TL, Brooks WH, Steele C, Elliott LH (1985) Pokeweed mitogen-induced immunoglobulin secretion by peripheral blood lymphocytes from patients with primary intracranial tumors. Characterization of T helper and B cell function. J Immunol 134:1545–1550

    CAS  PubMed  Google Scholar 

  • Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352

    CAS  PubMed  Google Scholar 

  • Sampson JH, Archer GE, Ashley DM et al (1996) Subcutaneous vaccination with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the “immunologically privileged” central nervous system. Proc Natl Acad Sci U S A 93:10399–10404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sampson JH, Archer GE, Mitchell DA et al (2009) An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther 8:2773–2779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandberg-Wollheim M, Zweiman B, Levinson AI, Lisak RP (1986) Humoral immune responses within the human central nervous system following systemic immunization. J Neuroimmunol 11:205–214

    CAS  PubMed  Google Scholar 

  • Saris SC, Spiess P, Lieberman DM, Lin S, Walbridge S, Oldfield EH (1992) Treatment of murine primary brain tumors with systemic interleukin-2 and tumor-infiltrating lymphocytes. J Neurosurg 76:513–519

    CAS  PubMed  Google Scholar 

  • Sawamura Y, Hosokawa M, Kuppner MC et al (1989) Antitumor activity and surface phenotypes of human glioma-infiltrating lymphocytes after in vitro expansion in the presence of interleukin 2. Cancer Res 49:1843–1849

    CAS  PubMed  Google Scholar 

  • Sawamura Y, Diserens AC, de Tribolet N (1990) In vitro prostaglandin E2 production by glioblastoma cells and its effect on interleukin-2 activation of oncolytic lymphocytes. J Neurooncol 9:125–130

    CAS  PubMed  Google Scholar 

  • Schartner JM, Hagar AR, Van Handel M, Zhang L, Nadkarni N, Badie B (2005) Impaired capacity for upregulation of MHC class II in tumor-associated microglia. Glia 51:279–285

    PubMed  Google Scholar 

  • Serafini P, De Santo C, Marigo I et al (2004) Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother 53:64–72

    CAS  PubMed  Google Scholar 

  • Siepl C, Bodmer S, Frei K et al (1988) The glioblastoma-derived T cell suppressor factor/transforming growth factor-beta 2 inhibits T cell growth without affecting the interaction of interleukin 2 with its receptor. Eur J Immunol 18:593–600

    CAS  PubMed  Google Scholar 

  • Sinha P, Clements VK, Ostrand-Rosenberg S (2005) Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 174:636–645

    CAS  PubMed  Google Scholar 

  • Sloan AE, Dansey R, Zamorano L et al (2000) Adoptive immunotherapy in patients with recurrent malignant glioma: preliminary results of using autologous whole-tumor vaccine plus granulocyte-macrophage colony-stimulating factor and adoptive transfer of anti-CD3-activated lymphocytes. Neurosurg Focus 9:e9

    CAS  PubMed  Google Scholar 

  • Steiner HH, Bonsanto MM, Beckhove P et al (2004) Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefit. J Clin Oncol 22:4272–4281

    PubMed  Google Scholar 

  • Stragliotto G, Vega F, Stasiecki P, Gropp P, Poisson M, Delattre JY (1996) Multiple infusions of anti-epidermal growth factor receptor (EGFR) monoclonal antibody (EMD 55,900) in patients with recurrent malignant gliomas. Eur J Cancer 32A:636–640

    CAS  PubMed  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    CAS  PubMed  Google Scholar 

  • Su YB, Sohn S, Krown SE et al (2004) Selective CD4+ lymphopenia in melanoma patients treated with temozolomide: a toxicity with therapeutic implications. J Clin Oncol 22:610–616

    CAS  PubMed  Google Scholar 

  • Takeda K, Clausen BE, Kaisho T et al (1999) Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10:39–49

    CAS  PubMed  Google Scholar 

  • Thornton AM, Shevach EM (1998) CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188:287–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsurushima H, Liu SQ, Tsuboi K, Yoshii Y, Nose T, Ohno T (1996) Induction of human autologous cytotoxic T lymphocytes against minced tissues of glioblastoma multiforme. J Neurosurg 84:258–263

    CAS  PubMed  Google Scholar 

  • Weissenberger J, Loeffler S, Kappeler A et al (2004) IL-6 is required for glioma development in a mouse model. Oncogene 23:3308–3316

    CAS  PubMed  Google Scholar 

  • Weller RO, Engelhardt B, Phillips MJ (1996) Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways. Brain Pathol 6:275–288

    CAS  PubMed  Google Scholar 

  • Wu L, Du H, Li Y, Qu P, Yan C (2011) Signal transducer and activator of transcription 3 (Stat3C) promotes myeloid-derived suppressor cell expansion and immune suppression during lung tumorigenesis. Am J Pathol 179:2131–2141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka R, Abe T, Yajima N et al (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 89:1172–1179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang BC, Lin HK, Hor WS et al (2003) Mediation of enhanced transcription of the IL-10 gene in T cells, upon contact with human glioma cells, by Fas signaling through a protein kinase A-independent pathway. J Immunol 171:3947–3954

    CAS  PubMed  Google Scholar 

  • Yang I, Kremen TJ, Giovannone AJ et al (2004) Modulation of major histocompatibility complex Class I molecules and major histocompatibility complex-bound immunogenic peptides induced by interferon-alpha and interferon-gamma treatment of human glioblastoma multiforme. J Neurosurg 100:310–319

    CAS  PubMed  Google Scholar 

  • Young HF, Sakalas R, Kaplan AM (1976) Inhibition of cell-mediated immunity in patients with brain tumors. Surg Neurol 5:19–23

    CAS  PubMed  Google Scholar 

  • Yu JS, Wheeler CJ, Zeltzer PM et al (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61:842–847

    CAS  PubMed  Google Scholar 

  • Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979

    CAS  PubMed  Google Scholar 

  • Yuan X, Hu J, Belladonna ML, Black KL, Yu JS (2006) Interleukin-23-expressing bone marrow-derived neural stem-like cells exhibit antitumor activity against intracranial glioma. Cancer Res 66:2630–2638

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian F. Parney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Chen, S., Parney, I.F. (2014). Immune Response: Glioma-Associated Immunosuppression. In: Sedo, A., Mentlein, R. (eds) Glioma Cell Biology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1431-5_8

Download citation

Publish with us

Policies and ethics