Skip to main content

Advertisement

Log in

Biological Products: Cellular Therapy and FDA Approved Products

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The pace of advances in the world of science have created new opportunities and insights that give us new and more understanding of our nature and environment. Among the different fields of science, new medical sciences have drawn a great deal of attention among medical science researchers and the society. The hope for finding treatments for incurable diseases and further improvement of man’s health is growing thanks to new medical technologies. Among the novel medical fields that have been extensively covered by medical and academic societies are cell therapy and gene therapy that are categorized under regenerative medicine. The present paper is an attempt to introduce the prospect of a curative cell-based therapy and new cellular and gene therapy drugs that have been recently approved by FDA (food and drug administration). Cellular and gene therapy are two very close fields of regenerative medicine and sciences which their targets and applications can be discussed together. What adds to the importance of this new field of science is the possibility to translate the hope for treatment of incurable diseases into actual treatments. What follows delves deeper into this new field of science and the drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A key organization to set standards, facilitate accreditation, and educational activities in the USA.

  2. A set of regulations concerning human-tissue cells or cell products based on tissue that are designed for human usages.

  3. Granulocyte-macrophage colony-stimulating factor

References

  1. Petricciani, J., Hayakawa, T., Stacey, G., Trouvin, J.-H., & Knezevic, I. (2017). Scientific considerations for the regulatory evaluation of cell therapy products. Biologicals, 50, 20–26. https://doi.org/10.1016/J.BIOLOGICALS.2017.08.011.

    Article  PubMed  Google Scholar 

  2. Shaz, B., Hillyer, C. D., Abrams, C. S., & Roshal, M. (2013). Transfusion medicine and hemostasis : Clinical and laboratory aspects (3rd ed.). Elsevier. Retrieved from https://www.sciencedirect.com/science/book/9780123971647.

  3. Kuraitis, D., Giordano, C., Suuronen, E. J., & Ruel, M. (2014). Cell therapy to regenerate the ischemic heart. In Cardiac regeneration and repair (pp. 118–137). Elsevier. https://doi.org/10.1533/9780857096708.2.118.

  4. Golchin, A., Hosseinzadeh, S., & Ardeshirylajimi, A. (2018). The exosomes released from different cell types and their effects in wound healing. Journal of Cellular Biochemistry, 119(7), 5043–5052. https://doi.org/10.1002/jcb.26706.

    Article  CAS  PubMed  Google Scholar 

  5. Mehta, R. S., Randolph, B., Daher, M., & Rezvani, K. (2018). NK cell therapy for hematologic malignancies. International Journal of Hematology, 107(3), 262–270. https://doi.org/10.1007/s12185-018-2407-5.

    Article  CAS  PubMed  Google Scholar 

  6. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S., & Milone, M. C. (2018). CAR T cell immunotherapy for human cancer. Science, 359(6382), 1361–1365. https://doi.org/10.1126/science.aar6711.

    Article  CAS  Google Scholar 

  7. Zumla, A., Rao, M., Wallis, R. S., Kaufmann, S. H. E., Rustomjee, R., Mwaba, P., … Host-Directed Therapies Network consortium. (2016). Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. The Lancet Infectious Diseases, 16(4), e47–e63. https://doi.org/10.1016/S1473-3099(16)00078-5.

  8. Tsilimigras, D. I., Oikonomou, E. K., Moris, D., Schizas, D., Economopoulos, K. P., & Mylonas, K. S. (2017). Stem cell therapy for congenital heart disease. Circulation, 136(24), 2373–2385. https://doi.org/10.1161/CIRCULATIONAHA.117.029607.

    Article  PubMed  Google Scholar 

  9. Roura, S., Gálvez-Montón, C., Mirabel, C., Vives, J., & Bayes-Genis, A. (2017). Mesenchymal stem cells for cardiac repair: are the actors ready for the clinical scenario? Stem Cell Research & Therapy, 8(1), 238. https://doi.org/10.1186/s13287-017-0695-y.

    Article  CAS  Google Scholar 

  10. Arnold, D. E., & Heimall, J. R. (2017). A review of chronic granulomatous disease. Advances in Therapy, 34(12), 2543–2557. https://doi.org/10.1007/s12325-017-0636-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schlabe, S., & Rockstroh, J. K. (2018). Advances in the treatment of HIV/HCV coinfection in adults. Expert Opinion on Pharmacotherapy, 19(1), 49–64. https://doi.org/10.1080/14656566.2017.1419185.

    Article  CAS  PubMed  Google Scholar 

  12. Bajek, A., Porowinska, D., Kloskowski, T., Brzoska, E., Ciemerych, M. A., & Drewa, T. (2015). Cell therapy in Duchenne muscular dystrophy treatment: Clinical trials overview. Critical Reviews in Eukaryotic Gene Expression, 25(1), 1–11. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25955813.

  13. Negroni, E., Bigot, A., Butler-Browne, G. S., Trollet, C., & Mouly, V. (2016). Cellular therapies for muscular dystrophies: frustrations and clinical successes. Human Gene Therapy, 27(2), 117–126. https://doi.org/10.1089/hum.2015.139.

    Article  CAS  PubMed  Google Scholar 

  14. Kumar, R., Bonfim, C., & George, B. (2017). Hematopoietic cell transplantation for aplastic anemia. Current Opinion in Hematology, 24(6), 509–514. https://doi.org/10.1097/MOH.0000000000000382.

    Article  PubMed  Google Scholar 

  15. Dong, A. C., & Rivella, S. (2017). Gene addition strategies for β-thalassemia and sickle cell anemia. Advances in Experimental Medicine and Biology, 1013, 155–176. https://doi.org/10.1007/978-1-4939-7299-9_6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lunn, J. S., Sakowski, S. A., Hur, J., & Feldman, E. L. (2011). Stem cell technology for neurodegenerative diseases. Annals of Neurology, 70(3), 353–361. https://doi.org/10.1002/ana.22487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sakthiswary, R., & Raymond, A. A. (2012). Stem cell therapy in neurodegenerative diseases: From principles to practice. Neural Regeneration Research, 7(23), 1822–1831. https://doi.org/10.3969/j.issn.1673-5374.2012.23.009.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Geiger, S., Hirsch, D., & Hermann, F. G. (2017). Cell therapy for lung disease. European Respiratory Review, 26(144), 170044. https://doi.org/10.1183/16000617.0044-2017.

    Article  PubMed  Google Scholar 

  19. Shin, T.-H., Kim, H.-S., Choi, S. W., & Kang, K.-S. (2017). Mesenchymal stem cell therapy for inflammatory skin diseases: clinical potential and mode of action. International Journal of Molecular Sciences, 18(2), 244. https://doi.org/10.3390/ijms18020244.

    Article  CAS  PubMed Central  Google Scholar 

  20. Maeder, M. L., & Gersbach, C. A. (2016). Genome-editing technologies for gene and cell therapy. Molecular Therapy, 24(3), 430–446. https://doi.org/10.1038/mt.2016.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Golchin, A., Hosseinzadeh, S., & Roshangar, L. (2017). The role of nanomaterials in cell delivery systems. Medical Molecular Morphology, 51(1), 1–12. https://doi.org/10.1007/s00795-017-0173-8.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, J., Huang, X., Wang, H., Liu, X., Zhang, T., Wang, Y., & Hu, D. (2015). The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy. Stem Cell Research & Therapy, 6(1), 234. https://doi.org/10.1186/s13287-015-0240-9.

    Article  Google Scholar 

  23. Golchin, A., Rekabgardan, M., Taheri, R. A., & Nourani, M. R. (2018). Promotion of cell-based therapy: special focus on the cooperation of mesenchymal stem cell therapy and gene therapy for clinical trial studies (pp. 1–16). New York: Springer. https://doi.org/10.1007/5584_2018_256.

    Book  Google Scholar 

  24. Matsumoto, M. M., & Matthews, K. R. W. (2015). A need for renewed and cohesive US policy on cord blood banking. Stem Cell Reviews, 11(6), 789–797. https://doi.org/10.1007/s12015-015-9613-9.

    Article  Google Scholar 

  25. Matsumoto, M. M., Dajani, R., & Matthews, K. R. W. (2015). Cord blood banking in the Arab world: current status and future developments. Biology of Blood and Marrow Transplantation, 21(7), 1188–1194. https://doi.org/10.1016/j.bbmt.2015.01.012.

    Article  PubMed  Google Scholar 

  26. Allison, M. (2012). Hemacord approval may foreshadow regulatory creep for HSC therapies. Nature Biotechnology, 30(4), 304–304. https://doi.org/10.1038/nbt0412-304.

    Article  CAS  PubMed  Google Scholar 

  27. Research, C. for B. E. and. (2018). Cellular & gene therapy products. Retrieved from https://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts/default.htm.

  28. Dessels, C., Alessandrini, M., & Pepper, M. S. (2018). Factors influencing the umbilical cord blood stem cell industry: an evolving treatment landscape. Stem Cells Translational Medicine. https://doi.org/10.1002/sctm.17-0244.

  29. Siripattarapravat, K., & Cibelli, J. B. (2011). Method for somatic cell nuclear transfer in zebrafish. Methods in Cell Biology, 104, 209–217. https://doi.org/10.1016/B978-0-12-374814-0.00012-4.

    Article  PubMed  Google Scholar 

  30. Trounson, A. (2014). Nuclear transfer for stem cells. In Principles of cloning (pp. 313–316). https://doi.org/10.1016/B978-0-12-386541-0.00024-2.

  31. Brenner, M. K. (2018). Current gene marking and gene therapy protocols for human bone marrow transplantation. In Somatic gene therapy (pp. 225–242). CRC Press. https://doi.org/10.1201/9781351076760-13.

  32. Schmidt, C. (2011). FDA approves first cell therapy for wrinkle-free visage. Nature Biotechnology, 29(8), 674–675. https://doi.org/10.1038/nbt0811-674.

    Article  CAS  PubMed  Google Scholar 

  33. Piñero Eça, L., Galdino Pinto, D., Murari Soares de Pinho, A., Paulo Vaccari Mazzetti, M., & Emiko Yagima Odo, M. (2012). Autologous fibroblast culture in the repair of aging skin. Dermatologic Surgery, 38(2 Part 1), 180–184. https://doi.org/10.1111/j.1524-4725.2011.02192.x.

    Article  CAS  Google Scholar 

  34. Mehrabani, D., & Manafi, N. (2013). Role of cultured skin fibroblasts in aesthetic and plastic surgery. World Journal of Plastic Surgery, 2(1), 2–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25489497.

  35. McArdle, A., Senarath-Yapa, K., Walmsley, G. G., Hu, M., Atashroo, D. A., Tevlin, R., … Longaker, M. T. (2014). The role of stem cells in aesthetic surgery. Plastic and Reconstructive Surgery, 134(2), 193–200. https://doi.org/10.1097/PRS.0000000000000404.

  36. Smith, S. R., Munavalli, G., Weiss, R., Maslowski, J. M., Hennegan, K. P., & Novak, J. M. (2012). A multicenter, double-blind, placebo-controlled trial of autologous fibroblast therapy for the treatment of nasolabial fold wrinkles. Dermatologic Surgery, 38(7pt2), 1234–1243. https://doi.org/10.1111/j.1524-4725.2012.02349.x.

    Article  CAS  PubMed  Google Scholar 

  37. Dunkin, B. S., & Lattermann, C. (2013). New and emerging techniques in cartilage repair: MACI. Operative Techniques in Sports Medicine, 21(2), 100–107. https://doi.org/10.1053/j.otsm.2013.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gobbi, A., Kon, E., Berruto, M., Francisco, R., Filardo, G., & Marcacci, M. (2006). Patellofemoral full-thickness chondral defects treated with Hyalograft-C. The American Journal of Sports Medicine, 34(11), 1763–1773. https://doi.org/10.1177/0363546506288853.

    Article  PubMed  Google Scholar 

  39. Ochs, B. G., Müller-Horvat, C., Albrecht, D., Schewe, B., Weise, K., Aicher, W. K., & Rolauffs, B. (2011). Remodeling of articular cartilage and subchondral bone after bone grafting and matrix-associated autologous chondrocyte implantation for osteochondritis Dissecans of the knee. The American Journal of Sports Medicine, 39(4), 764–773. https://doi.org/10.1177/0363546510388896.

    Article  PubMed  Google Scholar 

  40. Dekker, T. J., Erickson, B., Adams, S. B., & Gross, C. E. (2017). Topical review: MACI as an emerging technology for the treatment of Talar osteochondral lesions. Foot & Ankle International, 38(9), 1045–1048. https://doi.org/10.1177/1071100717711482.

    Article  Google Scholar 

  41. Zaulyanov, L., & Kirsner, R. S. (2007). A review of a bi-layered living cell treatment (Apligraf) in the treatment of venous leg ulcers and diabetic foot ulcers. Clinical Interventions in Aging, 2(1), 93–98. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18044080.

  42. Falanga, V., Faria, K., & Bollenbach, T. (2014). Bioengineered skin constructs. In Principles of tissue engineering (pp. 1619–1643). https://doi.org/10.1016/B978-0-12-398358-9.00077-X.

  43. Schmidt, C. (2012). Gintuit cell therapy approval signals shift at US regulator. Nature Biotechnology, 30(6), 479–479. https://doi.org/10.1038/nbt0612-479.

    Article  CAS  PubMed  Google Scholar 

  44. McGuire, M. K., Scheyer, E. T., Nunn, M. E., & Lavin, P. T. (2008). A pilot study to evaluate a tissue-engineered bilayered cell therapy as an alternative to tissue from the palate. Journal of Periodontology, 79(10), 1847–1856. https://doi.org/10.1902/jop.2008.080017.

    Article  PubMed  Google Scholar 

  45. Yáñez-Muñoz, R. J., & Grupp, S. A. (2018). CAR-T in the clinic: drive with care. Gene Therapy, 25(3), 157–161. https://doi.org/10.1038/s41434-018-0023-x.

    Article  CAS  PubMed  Google Scholar 

  46. Jarosławski, S., & Toumi, M. (2015). Sipuleucel-T (Provenge®)—Autopsy of an innovative paradigm change in cancer treatment: why a single-product biotech company failed to capitalize on its breakthrough invention. BioDrugs, 29(5), 301–307. https://doi.org/10.1007/s40259-015-0140-7.

    Article  CAS  PubMed  Google Scholar 

  47. Vasani, D., Josephson, D. Y., Carmichael, C., Sartor, O., & Pal, S. K. (2011). Recent advances in the therapy of castration-resistant prostate cancer: The price of progress. Maturitas, 70(2), 194–196. https://doi.org/10.1016/j.maturitas.2011.07.018.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cheever, M. A., & Higano, C. S. (2011). PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clinical Cancer Research, 17(11), 3520–3526. https://doi.org/10.1158/1078-0432.CCR-10-3126.

    Article  PubMed  Google Scholar 

  49. Zheng, P.-P., Kros, J. M., & Li, J. (2018). Approved CAR T cell therapies: ice bucket challenges on glaring safety risks and long-term impacts. Drug Discovery Today, 23(6), 1175–1182. https://doi.org/10.1016/j.drudis.2018.02.012.

    Article  PubMed  Google Scholar 

  50. Dias, M. F., Joo, K., Kemp, J. A., Fialho, S. L., da Silva Cunha, A., Woo, S. J., & Kwon, Y. J. (2018). Molecular genetics and emerging therapies for retinitis pigmentosa: basic research and clinical perspectives. Progress in Retinal and Eye Research, 63, 107–131. https://doi.org/10.1016/j.preteyeres.2017.10.004.

    Article  CAS  PubMed  Google Scholar 

  51. Russell, S., Bennett, J., Wellman, J. A., Chung, D. C., Yu, Z.-F., Tillman, A., … Maguire, A. M. (2017). Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65 -mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. The Lancet, 390(10097), 849–860. https://doi.org/10.1016/S0140-6736(17)31868-8.

  52. Prasad, V. (2017). Immunotherapy: tisagenlecleucel — the first approved CAR-T-cell therapy: implications for payers and policy makers. Nature Reviews Clinical Oncology, 15(1), 11–12. https://doi.org/10.1038/nrclinonc.2017.156.

    Article  PubMed  Google Scholar 

  53. Bach, P. B., Giralt, S. A., & Saltz, L. B. (2017). FDA approval of tisagenlecleucel. JAMA, 318(19), 1861. https://doi.org/10.1001/jama.2017.15218.

    Article  PubMed  Google Scholar 

  54. Liu, Y., Chen, X., Han, W., & Zhang, Y. (2017). Tisagenlecleucel, an approved anti-CD19 chimeric antigen receptor T-cell therapy for the treatment of leukemia. Drugs of Today, 53(11), 597. https://doi.org/10.1358/dot.2017.53.11.2725754.

    Article  CAS  PubMed  Google Scholar 

  55. Iyer, R. K., Bowles, P. A., Kim, H., & Dulgar-Tulloch, A. (2018). Industrializing autologous adoptive immunotherapies: manufacturing advances and challenges. Frontiers in Medicine, 5, 150. https://doi.org/10.3389/fmed.2018.00150.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Salmikangas, P., Kinsella, N., & Chamberlain, P. (2018). Chimeric antigen receptor T-cells (CAR T-cells) for cancer immunotherapy – moving target for industry? Pharmaceutical Research, 35(8), 152. https://doi.org/10.1007/s11095-018-2436-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Commissioner, O. of the. (2017). Press Announcements - FDA approves CAR-T cell therapy to treat adults with certain types of large B-cell lymphoma. U.S. Food & Drugs Administration. Retrieved from https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm581216.htm

  58. de Lima Lopes, G., & Nahas, G. R. (2018). Chimeric antigen receptor T cells, a savior with a high price. Chinese Clinical Oncology, 7(2), 21–21. https://doi.org/10.21037/cco.2018.04.02.

    Article  PubMed  Google Scholar 

  59. Collichio, F., Burke, L., Proctor, A., Wallack, D., Collichio, A., Long, P. K., & Ollila, D. W. (2018). Implementing a program of talimogene laherparepvec. Annals of Surgical Oncology, 25(7), 1828–1835. https://doi.org/10.1245/s10434-018-6361-5.

    Article  PubMed  Google Scholar 

  60. Chesney, J., Awasthi, S., Curti, B., Hutchins, L., Linette, G., Triozzi, P., … Amatruda, T. (2018). Phase IIIb safety results from an expanded-access protocol of talimogene laherparepvec for patients with unresected, stage IIIB–IVM1c melanoma. Melanoma Research, 28(1), 44–51. https://doi.org/10.1097/CMR.0000000000000399.

  61. Ghadimi, K., Dombrowski, K. E., Levy, J. H., & Welsby, I. J. (2016). Andexanet alfa for the reversal of factor Xa inhibitor related anticoagulation. Expert Review of Hematology, 9(2), 115–122. https://doi.org/10.1586/17474086.2016.1135046.

    Article  CAS  PubMed  Google Scholar 

  62. (2018). Andexxa--an antidote for apixaban and rivaroxaban. The Medical Letter on Drugs and Therapeutics, 60(1549), 99–101. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/29913471.

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.G. conceptualized the outline and contents of the article. All authors contributed to writing and editing the manuscript.

Corresponding author

Correspondence to Ali Golchin.

Ethics declarations

Conflict of Interest

Authors do not have conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golchin, A., Farahany, T.Z. Biological Products: Cellular Therapy and FDA Approved Products. Stem Cell Rev and Rep 15, 166–175 (2019). https://doi.org/10.1007/s12015-018-9866-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9866-1

Keywords

Navigation