Skip to main content

Advertisement

Log in

Transplantation of Human Adipose-Derived Stem Cells Enhances Remyelination in Lysolecithin-Induced Focal Demyelination of Rat Spinal Cord

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Adipose-derived stem cells (ADSCs) are a desirable stem cell source in neurodegenerative diseases treatment due to their ability to differentiate into different cell lineages. In this study, we transplanted human ADSCs (hADSCs) into a lysophosphatidylcholine (lysolecithin) model of multiple sclerosis (MS) and determined the efficiency of these cells in remyelination process. Forty adult rats were randomly divided into control, lysolecithin, vehicle, and transplantation groups, and focal demyelination was induced by lysolecithin injection into spinal cord. To assess motor performance, all rats were examined weekly with a standard EAE scoring scale. Four weeks after cell transplantation, to assess the extent of demyelination and remyelination, Luxol Fast Blue staining was used. In addition, immunohistochemistry technique was used for assessment of the presence of oligodendrocyte phenotype cells in damaged spinal cord. Our results indicated that hADSCs had ability to differentiate into oligodendrocyte phenotype cells and improved remyelination process. Moreover, the evaluation of rat motor functions showed that animals which were treated with hADSC compared to other groups had significant improvement (P < 0.001). Our finding showed that hADSCs transplantation for cell-based therapies may play a proper cell source in the treatment of neurodegenerative diseases such as MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Compston, A., & Coles, A. (2008). Multiple sclerosis. Lancet, 372(9648), 1502–1517.

    Article  CAS  Google Scholar 

  2. Khan, F., Turner-Stokes, L., Ng, L., & Kilpatrick, T. (2008). Multidisciplinary rehabilitation for adults with multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 79(2), 114.

    CAS  Google Scholar 

  3. Holloman, J. P., Ho, C. C., Hukki, A., Huntley, J. L., & Gallicano, G. I. (2013). The development of hematopoietic and mesenchymal stem cell transplantation as an effective treatment for multiple sclerosis. American Journal of Stem Cells, 2(2), 95–107.

    Google Scholar 

  4. Hatch, M. N., Schaumburg, C. S., Lane, T. E., & Keirstead, H. S. (2009). Endogenous remyelination is induced by transplant rejection in a viral model of multiple sclerosis. Journal of Neuroimmunology, 212(1–2), 74–81.

    Article  CAS  Google Scholar 

  5. Barhum, Y., Gai-Castro, S., Bahat-Stromza, M., Barzilay, R., Melamed, E., & Offen, D. (2010). Intracerebroventricular transplantation of human mesenchymal stem cells induced to secrete neurotrophic factors attenuates clinical symptoms in a mouse model of multiple sclerosis. The Journal of Molecular Neuroscience, 41(1), 129–137.

    Article  CAS  Google Scholar 

  6. Kulbatski, I., Mothe, A. J., Keating, A., Hakamata, Y., Kobayashi, E., & Tator, C. H. (2007). Oligodendrocytes and radial glia derived from adult rat spinal cord progenitors: Morphological and immunocytochemical characterization. Journal of Histochemistry and Cytochemistry, 55(3), 209–222.

    Article  CAS  Google Scholar 

  7. Fraser, J. K., Wulur, I., Alfonso, Z., et al. (2006). Fat tissue: An underappreciated source of stem cells for biotechnology. Trends in Biotechnology, 24(4), 150–154.

    Article  CAS  Google Scholar 

  8. Parker, A. M., & Katz, A. J. (2006). Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opinion on Biological Therapy, 6(6), 567–578.

    Article  CAS  Google Scholar 

  9. Kalbermatten, D. F., Schaakxs, D., Kingham, P. J., & Wiberg, M. (2011). Neurotrophic activity of human adipose stem cells isolated from deep and superficial layers of abdominal fat. Cell and Tissue Research, 344(2), 251–260.

    Article  CAS  Google Scholar 

  10. Guilak, F., Lott, K. E., Awad, H. A., Cao, Q., Hicok, K. C., Fermor, B., et al. (2006). Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. Journal of Cellular Physiology, 206(1), 229–237.

    Article  CAS  Google Scholar 

  11. Razavi, S., Razavi, M. R., Zarkesh Esfahani, H., Kazemi, M., & Mostafavi, F. S. (2013). Comparing brain-derived neurotrophic factor and ciliary neurotrophic factor secretion of induced neurotrophic factor secreting cells from human adipose and bone marrow-derived stem cells. Development, Growth and Differentiation, 55(6), 648–655.

    Article  CAS  Google Scholar 

  12. Razavi, S., Mardani, M., Kazemi, M., Esfandiari, E., Narimani, M., Esmaeili, A., et al. (2013). Effect of leukemia inhibitory factor on the myelinogenic ability of Schwann-like cells induced from human adipose-derived stem cells. Cellular and Molecular Neurobiology, 33(2), 283–289.

    Article  CAS  Google Scholar 

  13. Orbay, H., Uysal, A. C., Hyakusoku, H., & Mizuno, H. (2012). Differentiated and undifferentiated adipose-derived stem cells improve function in rats with peripheral nerve gaps. Journal of Plastic, Reconstructive and Aesthetic Surgery, 65(5), 657–664.

    Article  Google Scholar 

  14. Degaonkar, M. N., Raghunathan, P., Jayasundar, R., & Jagannathan, N. R. (2005). Determination of relaxation characteristics during preacute stage of lysophosphatidyl choline-induced demyelinating lesion in rat brain: an animal model of multiple sclerosis. Magnetic Resonance Imaging, 23(1), 69–73.

    Article  CAS  Google Scholar 

  15. Degaonkar, M. N., Jayasundar, R., & Jagannathan, N. R. (2002). Sequential diffusion-weighted magnetic resonance imaging study of lysophosphatidyl choline-induced experimental demyelinating lesion: an animal model of multiple sclerosis. Journal of Magnetic Resonance Imaging, 16(2), 153–159.

    Article  Google Scholar 

  16. Ahmadi, N., Razavi, S., Kazemi, M., & Oryan, S. (2012). Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue and Cell, 44, 87–94.

    Article  CAS  Google Scholar 

  17. Boido, M., Garbossa, D., & Vercelli, A. (2011). Early graft of neural precursors in spinal cord compression reduces glial cyst and improves function. Journal of Neurosurgery, 15(1), 97–106.

    Google Scholar 

  18. Kerschensteiner, M., Stadelmann, C., Buddeberg, B. S., Merkler, D., Bareyre, F. M., Anthony, D. C., et al. (2004). Targeting experimental autoimmune encephalomyelitis lesions to a predetermined axonal tract system allows for refined behavioral testing in an animal model of multiple sclerosis. American Journal of Pathology, 164(4), 1455–1469.

    Article  Google Scholar 

  19. Mikaeili Agah, E., Parivar, K., Joghataei, MT. (2013). Therapeutic effect of transplanted human Wharton’s Jelly stem cell-derived oligodendrocyte progenitor cells (hWJ-MSC-derived OPCs) in an Animal model of multiple sclerosis. Molecular Neurobiology. doi:10.1007/s12035-013-8543-2.

  20. Flachenecker, P., & Stuke, K. (2008). National MS registries. Journal of Neurology, 255(6), 102–108.

    Article  Google Scholar 

  21. Hasan, K. M., Walimuni, I. S., Abid, H., Datta, S., Wolinsky, J. S., & Narayana, P. A. (2012). Human brain atlas-based multi-modal MRI analysis of volumetry, diffusometry, re-laxometry and lesion distribution in multiple sclero-sis patients and healthy adult controls: implications for understanding the pathogenesis of multiple scle-rosis and consolidation of quantitative MRI results in MS. The Journal of the Neurological Sciences, 313(2), 99–109.

    Article  Google Scholar 

  22. Kidd, P. (2003). Th1/Th2 balance: The hypothesis, its limitations, and implications for health and disease. Alternative Medicine Review, 8(3), 223–246.

    Google Scholar 

  23. Roncarolo, M. G., Bacchetta, R., Bordignon, C., et al. (2001). Type 1 T regulatory cells. Immunological Reviews, 182, 68–79.

    Article  CAS  Google Scholar 

  24. MohyeddinBonab, M., Mohajeri, M., Sahraian, M. A., Yazdanifar, M., Aghsaie, A., Farazmand, A., et al. (2013). Evaluation of cytokines in multiple sclerosis patients treated with mesenchymal stem cells. Archives of Medical Research, 44(4), 266–272.

    Article  CAS  Google Scholar 

  25. Constantin, G., Marconi, S., Rossi, B., Angiari, S., Cal-deran, L., Anghileri, E., et al. (2009). Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells, 27(10), 2624–2635.

    Article  CAS  Google Scholar 

  26. Wei, X., Zhao, L., Zhong, J., Gu, H., Feng, D., Johnstone, B. H., et al. (2009). Adipose stromal cells-secreted neuroprotective media against neuronal apoptosis. Neuroscience Letters, 462(1), 76–79.

    Article  CAS  Google Scholar 

  27. Sen, A., Lea-Currie, Y. R., Sujkowska, D., Franklin, D. M., Wilkison, W. O., Halvorsen, Y. D., et al. (2001). Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. Journal of Cellular Biochemistry, 81, 312–319.

    Article  CAS  Google Scholar 

  28. Fuhrmann, T., Montzka, K., Hillen, L. M., Hodde, D., Dreier, A., Bozkurt, A., et al. (2010). Axon growth-promoting properties of human bone marrow mesenchymal stromal cells. Neuroscience Letters, 474(1), 37–41.

    Article  Google Scholar 

  29. Decker, L., Desmarquet-Trin-Dinh, C., Taillebourg, E., Ghislain, J., Vallat, J. M., & Charnay, P. (2006). Peripheral myelin maintenance is a dynamic process requiring constant Krox20 expression. Journal of Neuroscience, 26(38), 9771–9779.

    Article  CAS  Google Scholar 

  30. Jahn, O., Tenzer, S., & Werner, H. B. (2009). Myelin proteomics: molecular anatomy of an insulating sheath. Molecular Neurobiology, 40(1), 55–72.

    Article  CAS  Google Scholar 

  31. Jaramillo-Merchán, J., Jones, J., Ivorra, J. L., Pastor, D., Viso-León, M. C., Armengól, J. A., et al. (2013). Mesenchymal stromal-cell transplants induce oligodendrocyte progenitor migration and remyelination in a chronic demyelination model. Cell Death and Disease, 4, e779.

    Article  Google Scholar 

  32. Bai, L., Hecker, J., Kerstetter, A., & Miller, R. H. (2013). Myelin repair and functional recovery mediated by neural cell transplantation in a mouse model of multiplesclerosis. Neuroscience Bulletin, 29(2), 239–250.

    Article  CAS  Google Scholar 

  33. Honma, Y., Araki, T., Gianino, S., Bruce, A., Heuckeroth, R., Johnson, E., et al. (2002). Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron, 35(2), 267–282.

    Article  CAS  Google Scholar 

  34. Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., et al. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106, 1755–1761.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Iranian Council of Stem Cell Technology, Isfahan University of Medical Sciences for their financial support (Grant No. 189067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahnaz Razavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghasemi, N., Razavi, S., Mardani, M. et al. Transplantation of Human Adipose-Derived Stem Cells Enhances Remyelination in Lysolecithin-Induced Focal Demyelination of Rat Spinal Cord. Mol Biotechnol 56, 470–478 (2014). https://doi.org/10.1007/s12033-014-9744-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9744-2

Keywords

Navigation