Skip to main content

Advertisement

Log in

New Difluoro Knoevenagel Condensates of Curcumin, Their Schiff Bases and Copper Complexes as Proteasome Inhibitors and Apoptosis Inducers in Cancer Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Emerging evidence clearly suggests the potential chemopreventive and anti-tumor activity of a well known “natural agent” curcumin. However, studies have shown that curcumin is not readily bioavailable, and thus the tissue bioavailability of curcumin is also poor except for gastrointestinal track. Because of the potential biological activity of curcumin, many studies have attempted for making a better analog of cucumin that is equally effective or better with increased bioavailability, which was the purpose of our current study.

Methods

We have designed and synthesized new difluoro Knoevenagel condensates of curcumin and Schiff bases along with their copper (II) complexes and evaluated their biological activities with respect to the inhibitory effects on purified rabbit 26S proteasome, and growth inhibition and induction of apoptosis in colon and pancreatic cancer cell lines.

Results

All copper complexes possess distorted square planar geometries with 1:1 metal to ligand stoichiometry with reversible copper redox couple. The difluoro compound CDF exhibited inhibitory effects on purified rabbit 20S proteasome or cellular 26S proteasome, and caused both growth inhibition of cancer cell lines and induced apoptotic cell death in our preliminary assessment.

Conclusion

Our results suggest that our newly synthesized classes of curcumin analogs could be useful as chemopreventive and/or therapeutic agents against cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abas F, Lajis NH, Shaari K, Israf DA, Stanslas J, Yusuf UK, Raof SM. A labdane diterpene glucoside from the rhizomes of Curcuma mangga. J Nat Prod 2005;68:1090–3. doi:10.1021/np0500171.

    Article  PubMed  CAS  Google Scholar 

  2. Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A, Maitra A. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnology 2007;5:3. doi:10.1186/1477-3155-5-3.

    Article  PubMed  Google Scholar 

  3. Jagetia GC, Rajanikant GK. Role of curcumin, a naturally occurring phenolic compound of turmeric in accelerating the repair of excision wound, in mice whole-body exposed to various doses of gamma-radiation. J Surg Res 2004;120:127–38. doi:10.1016/j.jss.2003.12.003.

    Article  PubMed  CAS  Google Scholar 

  4. Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. Adv Exp Med Biol 2007;595:1–75. doi:10.1007/978-0-387-46401-5_1.

    Article  PubMed  Google Scholar 

  5. Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 2009;30:85–94. doi:10.1016/j.tips.2008.11.002.

    Article  PubMed  CAS  Google Scholar 

  6. Aggarwal S, Ichikawa H, Takada Y, Sandur SK, Shishodia S, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol Pharmacol 2006;69:195–206.

    PubMed  CAS  Google Scholar 

  7. Ammon HP, Safayhi H, Mack T, Sabieraj J. Mechanism of antiinflammatory actions of curcumine and boswellic acids. J Ethnopharmacol 1993;38:113–9. doi:10.1016/0378-8741(93)90005-P.

    Article  PubMed  CAS  Google Scholar 

  8. Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN, Aggarwal BB. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol 2008;76:1590–611. doi:10.1016/j.bcp.2008.08.008.

    Article  PubMed  CAS  Google Scholar 

  9. Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett 2008;267:133–64. doi:10.1016/j.canlet.2008.03.025.

    Article  PubMed  CAS  Google Scholar 

  10. Araujo CC, Leon LL. Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz 2001;96:723–8. doi:10.1590/S0074-02762001000500026.

    Article  PubMed  CAS  Google Scholar 

  11. Babu PS, Srinivasan K. Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats. Mol Cell Biochem 1997;166:169–75. doi:10.1023/A:1006819605211.

    Article  PubMed  CAS  Google Scholar 

  12. Gilani AH, Shah AJ, Ghayur MN, Majeed K. Pharmacological basis for the use of turmeric in gastrointestinal and respiratory disorders. Life Sci 2005;76:3089–105. doi:10.1016/j.lfs.2004.12.021.

    Article  PubMed  CAS  Google Scholar 

  13. Goel A, Jhurani S, Aggarwal BB. Multi-targeted therapy by curcumin: how spicy is it? Mol Nutr Food Res 2008;52:1010–30. doi:10.1002/mnfr.200700354.

    Article  PubMed  CAS  Google Scholar 

  14. Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin": from kitchen to clinic. Biochem Pharmacol 2008;75:787–809. doi:10.1016/j.bcp.2007.08.016.

    Article  PubMed  CAS  Google Scholar 

  15. Jang EM, Choi MS, Jung UJ, Kim MJ, Kim HJ, Jeon SM, Shin SK, Seong CN, Lee MK. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters. Metabolism 2008;57:1576–83. doi:10.1016/j.metabol.2008.06.014.

    Article  PubMed  CAS  Google Scholar 

  16. Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res 2007;67:3853–61. doi:10.1158/0008-5472.CAN-06-4257.

    Article  PubMed  CAS  Google Scholar 

  17. Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 2008;269:199–225. doi:10.1016/j.canlet.2008.03.009.

    Article  PubMed  CAS  Google Scholar 

  18. Kunnumakkara AB, Diagaradjane P, Guha S, Deorukhkar A, Shentu S, Aggarwal BB, Krishnan S. Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products. Clin Cancer Res 2008;14:2128–36. doi:10.1158/1078-0432.CCR-07-4722.

    Article  PubMed  CAS  Google Scholar 

  19. Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 2008;269:199–225. doi:10.1016/j.canlet.2008.03.009.

    Article  PubMed  CAS  Google Scholar 

  20. Kunnumakkara AB, Diagaradjane P, Guha S, Deorukhkar A, Shentu S, Aggarwal BB, Krishnan S. Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products. Clin Cancer Res 2008;14:2128–36. doi:10.1158/1078-0432.CCR-07-4722.

    Article  PubMed  CAS  Google Scholar 

  21. Shishodia S, Chaturvedi MM, Aggarwal BB. Role of curcumin in cancer therapy. Curr Probl Cancer 2007;31:243–305. doi:10.1016/j.currproblcancer.2007.04.001.

    Article  PubMed  Google Scholar 

  22. Sidhu GS, Mani H, Gaddipati JP, Singh AK, Seth P, Banaudha KK, Patnaik GK, Maheshwari RK. Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice. Wound Repair Regen 1999;7:362–74. doi:10.1046/j.1524-475X.1999.00362.x.

    Article  PubMed  CAS  Google Scholar 

  23. Singh S, Aggarwal BB. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem 1995;270:24995–5000. doi:10.1074/jbc.270.25.14867.

    Article  PubMed  CAS  Google Scholar 

  24. Singh SV, Hu X, Srivastava SK, Singh M, Xia H, Orchard JL, Zaren HA. Mechanism of inhibition of benzo[a]pyrene-induced forestomach cancer in mice by dietary curcumin. Carcinogenesis 1998;19:1357–60. doi:10.1093/carcin/19.8.1357.

    Article  PubMed  CAS  Google Scholar 

  25. Xu YX, Pindolia KR, Janakiraman N, Noth CJ, Chapman RA, Gautam SC. Curcumin, a compound with anti-inflammatory and anti-oxidant properties, down-regulates chemokine expression in bone marrow stromal cells. Exp Hematol 1997;25:413–22.

    PubMed  CAS  Google Scholar 

  26. Verma SP, Salamone E, Goldin B. Curcumin and genistein, plant natural products, show synergistic inhibitory effects on the growth of human breast cancer MCF-7 cells induced by estrogenic pesticides. Biochem Biophys Res Commun 1997;233:692–6. doi:10.1006/bbrc.1997.6527.

    Article  PubMed  CAS  Google Scholar 

  27. Wahlstrom B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol (Copenh) 1978;43:86–92.

    CAS  Google Scholar 

  28. Bhutani MK, Bishnoi M, Kulkarni SK. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav 2009;92:39–43. doi:10.1016/j.pbb.2008.10.007.

    Article  PubMed  CAS  Google Scholar 

  29. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 1998;64:353–6. doi:10.1055/s-2006-957450.

    Article  PubMed  CAS  Google Scholar 

  30. Sahu A, Kasoju N, Bora U. Fluorescence study of the curcumin-casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules 2008;9:2905–12. doi:10.1021/bm800683f.

    Article  PubMed  CAS  Google Scholar 

  31. Shen L, Ji HF. Theoretical study on physicochemical properties of curcumin. Spectrochim Acta Part A: Mol Biomol Spectrosc 2007;67:619–23. doi:10.1016/j.saa.2006.08.018.

    Article  Google Scholar 

  32. Liang G, Yang S, Jiang L, Zhao Y, Shao L, Xiao J, Ye F, Li Y, Li X. Synthesis and anti-bacterial properties of mono-carbonyl analogues of curcumin. Chem Pharm Bull (Tokyo) 2008;56:162–7. doi:10.1248/cpb.56.162.

    Article  CAS  Google Scholar 

  33. Liang G, Yang S, Zhou H, Shao L, Huang K, Xiao J, Huang Z, Li X. Synthesis, crystal structure and anti-inflammatory properties of curcumin analogues. Eur J Med Chem. (2008).

  34. Mosley CA, Liotta DC, Snyder JP. Highly active anticancer curcumin analogues. Adv Exp Med Biol 2007;595:77–103. doi:10.1007/978-0-387-46401-5_2.

    Article  PubMed  Google Scholar 

  35. Poma P, Notarbartolo M, Labbozzetta M, Maurici A, Carina V, Alaimo A, Rizzi M, Simoni D, D'Alessandro N. The antitumor activities of curcumin and of its isoxazole analogue are not affected by multiple gene expression changes in an MDR model of the MCF-7 breast cancer cell line: analysis of the possible molecular basis. Int J Mol Med 2007;20:329–35.

    PubMed  CAS  Google Scholar 

  36. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm 2007;4:807–18. doi:10.1021/mp700113r.

    Article  PubMed  CAS  Google Scholar 

  37. John VD, Kuttan G, Krishnankutty K. Anti-tumour studies of metal chelates of synthetic curcuminoids. J Exp Clin Cancer Res 2002;21:219–24.

    PubMed  CAS  Google Scholar 

  38. Zambre AP, Jamadar A, Padhye S, Kulkarni VM. Copper conjugates of knoevenagel condensates of curcumin and their schiff base derivatives: synthesis, spectroscopy, magnetism, ESR, and electrochemistry. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2007;37:19–27. doi:10.1080/15533170601172385.

    Article  CAS  Google Scholar 

  39. Smart BE. Introduction: fluorine chemistry. Chem Rev 1996;96:1555–6. doi:10.1021/cr960075e.

    Article  PubMed  CAS  Google Scholar 

  40. Kirk KL. Selective fluorination in drug design and development: an overview of biochemical rationales. Curr Top Med Chem 2006;6:1447–56. doi:10.2174/156802606777951073.

    Article  PubMed  CAS  Google Scholar 

  41. Milacic V, Banerjee S, Landis-Piwowar KR, Sarkar FH, Majumdar AP, Dou QP. Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo. Cancer Res 2008;68:7283–92. doi:10.1158/0008-5472.CAN-07-6246.

    Article  PubMed  CAS  Google Scholar 

  42. Geary WJ. The use of conductivity measurements in organic solvents for thecharacterisation of coordination compounds. 1971. Ref Type: Generic

  43. Wang YY, Shi Q, Shi QZ, Gao YC, Zhou ZY. Syntheses, characterization and crystal structure of copper(II) [alpha],[beta]-unsaturated carboxylate complexes with imidazole. Polyhedron 1999;18:2009–15. doi:10.1016/S0277-5387(99)00092-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlul H. Sarkar.

Additional information

Dou and Sarkar are senior authors in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padhye, S., Yang, H., Jamadar, A. et al. New Difluoro Knoevenagel Condensates of Curcumin, Their Schiff Bases and Copper Complexes as Proteasome Inhibitors and Apoptosis Inducers in Cancer Cells. Pharm Res 26, 1874–1880 (2009). https://doi.org/10.1007/s11095-009-9900-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9900-8

KEY WORDS

Navigation