Skip to main content
Log in

Enhanced Oral Delivery of Curcumin from N-trimethyl Chitosan Surface-Modified Solid Lipid Nanoparticles: Pharmacokinetic and Brain Distribution Evaluations

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Solid lipid nanoparticles (SLNs) have been proposed as a colloidal carrier system that could enhance the oral bioavailability of curcumin. However, a burst release of the loaded drug, which occurs in acidic environments, has been a main obstacle to the oral delivery of curcumin by using SLNs as a carrier system. We hypothesized that a quarternized chitosan derivative could be used for acid-resistant coating to stabilize the SLNs and circumvent the burst release.

Methods

N-trimethyl chitosan (TMC) was synthesized and determined by 1H-NMR and FT-IR. To investigate the details of chitosan and TMC surface modification on SLCNs composed of palmitic acid, cholesterol, TPGS and curcumin, a number of factors such as optimized SLNs composition, solid state characterization, stability, cell viability, in vitro release in GI conditions, curcumin oral bioavailability and brain distribution studies, were evaluated.

Results

The TMC-SLCNs exhibited prolonged stability in room and refrigerated conditions, controlled drug release in simulated intestinal fluid, significantly higher oral bioavailability, and brain distribution of curcumin than free curcumin, chitosan and non-coated SLCNs.

Conclusions

These finding suggests that the TMC-SLCNs is a promising nanocarrier system for oral delivery and brain distribution of curcumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CH-SLCNs:

Chitosan coated solid lipid nanoparticles

DSC:

Differential scanning calorimetry

FT-IR:

Fourier transform-infrared spectroscopy

H-NMR:

Proton nuclear magnetic resonance spectroscopy

HPLC:

High performance liquid chromatography

LC-MS/MS:

Liquid chromatography – tandem mass spectroscopy

MTT reagent:

(3-[4, 5-dimethyl –thiazol-2-yl]-2, 5-diphenyl tetrazolium bromide)

PXRD:

Powder X-ray diffraction

SLCNs:

Curcumin-loaded solid lipid nanoparticles

SLNs:

Solid lipid nanoparticles

TGA:

Thermogravimetric analysis

TMC:

N-trimethyl chitosan

TMC-SLCNs:

N-trimethyl chitosan coated solid lipid nanoparticles

TPGS:

d-α-tocopheryl polyethylene glycol 1,000 succinate

References

  1. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: a short review. Life Sci. 2006;78(18):2081–7.

    Article  CAS  PubMed  Google Scholar 

  2. Tang H, Murphy CJ, Zhang B, Shen Y, Van Kirk EA, Murdoch WJ, et al. Curcumin polymers as anticancer conjugates. Biomaterials. 2010;31(27):7139–49.

    Article  CAS  PubMed  Google Scholar 

  3. Mondal G, Barui S, Saha S, Chaudhuri A. Tumor growth inhibition through targeting liposomally bound curcumin to tumor vasculature. J Control Release. 2013;172(3):832–40.

    Article  CAS  PubMed  Google Scholar 

  4. Sun J, Bi C, Chan HM, Sun S, Zhang Q, Zheng Y. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf B: Biointerfaces. 2013;111:367–75.

    Article  PubMed  Google Scholar 

  5. Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2012;64:83–101.

    Article  Google Scholar 

  6. Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–77.

    Article  PubMed  Google Scholar 

  7. Venkateswarlu V, Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release. 2004;95(3):627–38.

    Article  CAS  PubMed  Google Scholar 

  8. Venishetty VK, Chede R, Komuravelli R, Adepu L, Sistla R, Diwan PV. Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: a novel strategy to avoid intraduodenal administration. Colloids Surf B: Biointerfaces. 2012;95:1–9.

    Article  CAS  PubMed  Google Scholar 

  9. Madan J, Pandey RS, Jain V, Katare OP, Chandra R, Katyal A. Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells. Nanomedicine Nanotechnol Biol Med. 2013;9(4):492–503.

    Article  CAS  Google Scholar 

  10. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100(1):5–28.

    Article  CAS  PubMed  Google Scholar 

  11. Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release. 2006;111(1–2):107–16.

    Article  CAS  PubMed  Google Scholar 

  12. Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev. 2001;52(2):117–26.

    Article  CAS  PubMed  Google Scholar 

  13. Chen F, Zhang Z-R, Yuan F, Qin X, Wang M, Huang Y. In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery. Int J Pharm. 2008;349(1–2):226–33.

    Article  CAS  PubMed  Google Scholar 

  14. Subbiah R, Ramalingam P, Ramasundaram S, Kim DY, Park K, Ramasamy MK, et al. N, N, N-Trimethyl chitosan nanoparticles for controlled intranasal delivery of HBV surface antigen. Carbohydr Polym. 2012;89(4):1289–97.

    Article  CAS  PubMed  Google Scholar 

  15. Jintapattanakit A, Junyaprasert VB, Mao S, Sitterberg J, Bakowsky U, Kissel T. Peroral delivery of insulin using chitosan derivatives: a comparative study of polyelectrolyte nanocomplexes and nanoparticles. Int J Pharm. 2007;342(1):240–9.

    Article  CAS  PubMed  Google Scholar 

  16. Sandri G, Rossi S, Bonferoni MC, Ferrari F, Zambito Y, Colo GD, et al. Buccal penetration enhancement properties of <i> N</i> -trimethyl chitosan: influence of quaternization degree on absorption of a high molecular weight molecule. Int J Pharm. 2005;297(1):146–55.

    Article  CAS  PubMed  Google Scholar 

  17. Di Colo G, Burgalassi S, Zambito Y, Monti D, Chetoni P. Effects of different N‐trimethyl chitosans on in vitro/in vivo ofloxacin transcorneal permeation. J Pharm Sci. 2004;93(11):2851–62.

    Article  PubMed  Google Scholar 

  18. Florea BI, Thanou M, Junginger HE, Borchard G. Enhancement of bronchial octreotide absorption by chitosan and <i> N</i> -trimethyl chitosan shows linear in vitro/in vivo correlation. J Control Release. 2006;110(2):353–61.

    Article  CAS  PubMed  Google Scholar 

  19. He W, Du Y, Dai W, Wu Y, Zhang M. Effects of N‐trimethyl chitosan chloride as an absorption enhancer on properties of insulin liquid suppository in vitro and in vivo. J Appl Polym Sci. 2006;99(3):1140–6.

    Article  CAS  Google Scholar 

  20. Sayın B, Somavarapu S, Li XW, Sesardic D, Şenel S, Alpar OH. TMC–MCC (N-trimethyl chitosan–mono-N-carboxymethyl chitosan) nanocomplexes for mucosal delivery of vaccines. Eur J Pharm Sci. 2009;38(4):362–9.

    Article  PubMed  Google Scholar 

  21. Yin L, Ding J, He C, Cui L, Tang C, Yin C. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials. 2009;30(29):5691–700.

    Article  CAS  PubMed  Google Scholar 

  22. Cafaggi S, Russo E, Stefani R, Leardi R, Caviglioli G, Parodi B, et al. Preparation and evaluation of nanoparticles made of chitosan or <i> N</i> -trimethyl chitosan and a cisplatin–alginate complex. J Control Release. 2007;121(1):110–23.

    Article  CAS  PubMed  Google Scholar 

  23. Germershaus O, Mao S, Sitterberg J, Bakowsky U, Kissel T. Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: establishment of structure–activity relationships in vitro. J Control Release. 2008;125(2):145–54.

    Article  CAS  PubMed  Google Scholar 

  24. Chen H, Wu J, Sun M, Guo C, Yu A, Cao F, et al. N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin. J Liposome Res. 2012;22(2):100–9.

    CAS  PubMed  Google Scholar 

  25. Slütter B, Soema PC, Ding Z, Verheul R, Hennink W, Jiskoot W. Conjugation of ovalbumin to trimethyl chitosan improves immunogenicity of the antigen. J Control Release. 2010;143(2):207–14.

    Article  PubMed  Google Scholar 

  26. Zhang Z, Tan S, Feng S-S. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33(19):4889–906.

    Article  CAS  PubMed  Google Scholar 

  27. Ramasamy TG, Haidar ZS. Formulation, characterization and cytocompatibility evaluation of novel coreshell solid lipid nanoparticles for the controlled and tunable delivery of a model protein. J Bionanoscience. 2011;5(2):143–54.

    Article  CAS  Google Scholar 

  28. Zanotto-Filho A, Coradini K, Braganhol E, Schröder R, de Oliveira CM, Simões-Pires A, et al. Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment. Eur J Pharm Biopharm. 2013;83(2):156–67.

    Article  CAS  PubMed  Google Scholar 

  29. Mangolim CS, Moriwaki C, Nogueira AC, Sato F, Baesso ML, Neto AM, et al. Curcumin–β-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 2014;153:361–70.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Tang Q, Xu X, Li N. Development and evaluation of a novel phytosome-loaded chitosan microsphere system for curcumin delivery. Int J Pharm. 2013;448(1):168–74.

    Article  CAS  PubMed  Google Scholar 

  31. Kakkar V, Singh S, Singla D, Kaur IP. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res. 2011;55(3):495–503.

    Article  CAS  PubMed  Google Scholar 

  32. Wohlfart S, Khalansky AS, Gelperina S, Begley D, Kreuter J. Kinetics of transport of doxorubicin bound to nanoparticles across the blood–brain barrier. J Control Release. 2011;154(1):103–7.

    Article  CAS  PubMed  Google Scholar 

  33. Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2–3):165–96.

    Article  CAS  PubMed  Google Scholar 

  34. Chen C-C, Tsai T-H, Huang Z-R, Fang J-Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm. 2010;74(3):474–82.

    Article  CAS  PubMed  Google Scholar 

  35. Subedi RK, Kang KW, Choi H-K. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharm Sci. 2009;37(3–4):508–13.

    Article  CAS  PubMed  Google Scholar 

  36. de Carvalho SM, Noronha CM, Floriani CL, Lino RC, Rocha G, Bellettini IC, et al. Optimization of α-tocopherol loaded solid lipid nanoparticles by central composite design. Ind Crop Prod. 2013;49:278–85.

    Article  Google Scholar 

  37. Pawar YB, Shete G, Popat D, Bansal AK. Phase behavior and oral bioavailability of amorphous Curcumin. Eur J Pharm Sci. 2012;47(1):56–64.

    Article  CAS  PubMed  Google Scholar 

  38. Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR. Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int J Pharm. 2010;398(1–2):190–203.

    Article  CAS  PubMed  Google Scholar 

  39. van der Merwe SM, Verhoef JC, Verheijden JHM, Kotzé AF, Junginger HE. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur J Pharm Biopharm. 2004;58(2):225–35.

    Article  PubMed  Google Scholar 

  40. Porter CJH, Charman WN. Intestinal lymphatic drug transport: an update. Adv Drug Deliv Rev. 2001;50(1–2):61–80.

    Article  CAS  PubMed  Google Scholar 

  41. Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY, Wang SL. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials. 2010;31(5):908–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program of Korean National Research Foundation (NRF-20110007794).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Tag Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalingam, P., Ko, Y.T. Enhanced Oral Delivery of Curcumin from N-trimethyl Chitosan Surface-Modified Solid Lipid Nanoparticles: Pharmacokinetic and Brain Distribution Evaluations. Pharm Res 32, 389–402 (2015). https://doi.org/10.1007/s11095-014-1469-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1469-1

Key words

Navigation