Skip to main content

Advertisement

Log in

Effects and Mechanism Analysis of Vascular Endothelial Growth Factor and Salvianolic Acid B on 125I-Low Density Lipoprotein Permeability of the Rabbit Aortary Endothelial Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Atherosclerosis is the common pathological basis of cardiovascular and cerebrovascular disease. This study aimed to investigate the effects of vascular endothelial growth factor (VEGF) and salvianolic acid B (SalB) on the permeability of the rabbit aortary endothelial cells (RAECs) and to figure out the possible underlying molecular mechanisms. The extravasation of 125I-low density lipoprotein (125I-LDL) through the RAECs was significantly increased by VEGF and decreased by SalB. Meanwhile, the tight junction-associated proteins occludin and claudin-5 were found downregulated by VEGF and the caveolae structure proteins caveolin-1 and caveolin-2 upregulated, which were abolished by the infusion of SalB. In addition, a marked increase in levels of cGMP and protein kinase G-1 (PKG-1) as well as activation of nuclear factor-κB (NF-κB) p65 were found after VEGF infusion, which were attenuated by SalB. This study demonstrates that VEGF and SalB can alter the LDL permeability of the RAECs by a paracellular pathway (downregulation of occludin and claudin-5) and a transcellular pathway (upregulation of caveolin-1 and caveolin-2), in which the cGMP/PKG/NF-κB signal pathway is possibly involved. The experimental results provide a new method and basic knowledge of prevention and treatment for cardiovascular and cerebrovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Favero, G., et al. (2014). Endothelium and its alterations in cardiovascular diseases: Life style intervention. BioMed Research International, 2014, 801896.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Hage, M. P., & Azar, S. T. (2014). Treating low high-density lipoprotein cholesterol: What is the evidence? Therapeutic Advances in Endocrinology and Metabolism, 5(1), 10–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Abbott, N. J. (2013). Blood-brain barrier structure and function and the challenges for CNS drug delivery. Journal of Inherited Metabolic Disease, 36(3), 437–449.

    Article  CAS  PubMed  Google Scholar 

  4. Dobrogowska, D. H., & Vorbrodt, A. W. (2004). Immunogold localization of tight junctional proteins in normal and osmotically-affected rat blood-brain barrier. Journal of Molecular Histology, 35(5), 529–539.

    Article  CAS  PubMed  Google Scholar 

  5. Li, Z., et al. (2014). Low-dose endothelial monocyte-activating polypeptide-II increases permeability of blood-tumor barrier by caveolae-mediated transcellular pathway. Journal of Molecular Neuroscience, 52(3), 313–322.

    Article  CAS  PubMed  Google Scholar 

  6. Li, H. H., et al. (2013). Caveolae-dependent and -independent uptake of albumin in cultured rodent pulmonary endothelial cells. PLoS ONE, 8(11), e81903.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Lin, Z. X., et al. (2008). Inhibition of tumor-induced edema by antisense VEGF is mediated by suppressive vesiculo-vacuolar organelles (VVO) formation. Cancer Science, 99(12), 2540–2546.

    Article  CAS  PubMed  Google Scholar 

  8. Nagy, J. A., Dvorak, A. M., & Dvorak, H. F. (2012). Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harbor Perspectives in Medicine, 2(2), a006544.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Campa, C. (2013). Effect of VEGF and anti-VEGF compounds on retinal pigment epithelium permeability: An in vitro study. European Journal of Ophthalmology, 23(5), 690–696.

    Article  PubMed  Google Scholar 

  10. Wang, J. E., et al. (2011). Effects of combining low frequency ultrasound irradiation with papaverine on the permeability of the blood-tumor barrier. Journal of Neuro-oncology, 102(2), 213–224.

    Article  CAS  PubMed  Google Scholar 

  11. Cao, W., et al. (2012). Current progress of research on pharmacologic actions of salvianolic acid B. Chinese Journal of Integrative Medicine, 18(4), 316–320.

    Article  CAS  PubMed  Google Scholar 

  12. Han, J. Y., et al. (2008). Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacology & Therapeutics, 117(2), 280–295.

    Article  CAS  Google Scholar 

  13. Shiao, M. S., et al. (2008). In search of antioxidants and anti-atherosclerotic agents from herbal medicines. BioFactors, 34(2), 147–157.

    Article  CAS  PubMed  Google Scholar 

  14. Yang, Z. H., et al. (2014) Permeability of the blood-tumor barrier is enhanced by combining vascular endothelial growth factor with papaverine. Journal of Neuroscience Research, 92(6), 703–713.

  15. Tscheik, C., Blasig, I. E., & Winkler, L. (2013). Trends in drug delivery through tissue barriers containing tight junctions. Tissue Barriers, 1(2), e24565.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Fontijn, R. D., et al. (2008). SOX-18 controls endothelial-specific claudin-5 gene expression and barrier function. American Journal of Physiology Heart and Circulatory Physiology, 294(2), H891–H900.

    Article  CAS  PubMed  Google Scholar 

  17. Koto, T., et al. (2007). Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. American Journal of Pathology, 170(4), 1389–1397.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Van Itallie, C. M., & Anderson, J. M. (2013). Claudin interactions in and out of the tight junction. Tissue Barriers, 1(3), e25247.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Kiss, A. L. (2012). Caveolae and the regulation of endocytosis. Advances in Experimental Medicine and Biology, 729, 14–28.

    Article  CAS  PubMed  Google Scholar 

  20. van Helmond, Z. K., et al. (2007). Caveolin-1 and -2 and their relationship to cerebral amyloid angiopathy in Alzheimer’s disease. Neuropathology and Applied Neurobiology, 33(3), 317–327.

    Article  PubMed  Google Scholar 

  21. Ishizaki, T., et al. (2003). Cyclic AMP induces phosphorylation of claudin-5 immunoprecipitates and expression of claudin-5 gene in blood-brain-barrier endothelial cells via protein kinase A-dependent and -independent pathways. Experimental Cell Research, 290(2), 275–288.

    Article  CAS  PubMed  Google Scholar 

  22. Lund, C. V., et al. (2006). Reduced glioma infiltration in Src-deficient mice. Journal of Neuro-oncology, 78(1), 19–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Zacharek, A., et al. (2007). Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. Journal of Cerebral Blood Flow and Metabolism, 27(10), 1684–1691.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Polson, J. B., et al. (1978). Studies on the inhibition of phosphodiesterase-catalyzed cyclic AMP and cyclic GMP breakdown and relaxation of canine tracheal smooth muscle. Biochemical Pharmacology, 27(2), 254–256.

    Article  CAS  PubMed  Google Scholar 

  25. Portugal, C. C., et al. (2012). Nitric oxide modulates sodium vitamin C transporter 2 (SVCT-2) protein expression via protein kinase G (PKG) and nuclear factor-kappaB (NF-kappaB). Journal of Biological Chemistry, 287(6), 3860–3872.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Siednienko, J., et al. (2011). Nitric oxide affects IL-6 expression in human peripheral blood mononuclear cells involving cGMP-dependent modulation of NF-kappaB activity. Cytokine, 54(3), 282–288.

    Article  CAS  PubMed  Google Scholar 

  27. Liu, X. D., et al. (2011). Molecular characterization of caveolin-1 in pigs infected with Haemophilus parasuis. The Journal of Immunology, 186(5), 3031–3046.

    Article  CAS  PubMed  Google Scholar 

  28. Tiruppathi, C., et al. (2008). Role of NF-kappaB-dependent caveolin-1 expression in the mechanism of increased endothelial permeability induced by lipopolysaccharide. Journal of Biological Chemistry, 283(7), 4210–4218.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Aslam, M., et al. (2012). TNF-alpha induced NFkappaB signaling and p65 (RelA) overexpression repress Cldn5 promoter in mouse brain endothelial cells. Cytokine, 57(2), 269–275.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by Liaoning Provincial Natural Science Foundation (NO. 201102140) and by Program for Excellent Talents in Liaoning Province, China (NO. LJQ2013088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ba, J., Peng, H., Chen, Y. et al. Effects and Mechanism Analysis of Vascular Endothelial Growth Factor and Salvianolic Acid B on 125I-Low Density Lipoprotein Permeability of the Rabbit Aortary Endothelial Cells. Cell Biochem Biophys 70, 1533–1538 (2014). https://doi.org/10.1007/s12013-014-0089-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0089-z

Keywords

Navigation