Skip to main content

Advertisement

Log in

Reduced Glioma Infiltration in Src-deficient Mice

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Summary

Malignant brain tumors, such as glioblastoma, are characterized by extensive angiogenesis and permeability of the blood-brain barrier (BBB). The infiltration of glioma cells away from the primary tumor mass is a pathological characteristic of glial tumors. The infiltrating tumor cells represent a significant factor in tumor recurrence following surgical debulking, radiation, and chemotherapy treatments. Vascular endothelial growth factor (VEGF)-mediated vascular permeability (VP) has been associated with the progression of glioma tumor growth and infiltration into surrounding normal brain parenchyma. While VEGF induces a robust VP response in control mice (src+/+ or src+/−), the VP response is blocked in src−/− mice that demonstrate a ‘leakage-resistant phenotype’ in the brain. We used the Src-deficient mouse model to determine the role of Src in the maintenance of the BBB following orthotopic implantation and growth of glioma cells in the brain. Although solid tumor growth was the same in control and src−/− mice, the infiltrating component of glioma growth was reduced in src−/− mice. Characterization of the expression and localization of the extracellular matrix (ECM) protein fibrinogen was evaluated to determine the effect of a Src-mediated VP defect in the host compartment. These studies indicate that the reduced VP of host brain blood vessels of src−/− mice mediates a reduction in glioma cell invasion in a mouse brain tumor xenograft model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

VEGF:

vascular endothelial growth factor

VP:

vascular permeability

BBB:

blood-brain barrier

VEGFR-2:

VEGF receptor 2

WHO:

World Health Organization

ECM:

extracellular matrix

References

  1. Ballabh P, Braun A, Nedergaard M, 2004. The blood-brain barrier: an overview: structure, regulation, and clinical implicationsNeurobiol Dis 16:1–13

    Article  PubMed  CAS  Google Scholar 

  2. Nag S, 2003. Morphology and molecular properties of cellular components of normal cerebral vesselsMethods Mol Med 89:3–36

    PubMed  CAS  Google Scholar 

  3. Smith QR, 2003. A review of blood-brain barrier transport techniquesMethods Mol Med 89:193–208

    PubMed  CAS  Google Scholar 

  4. Bradbury MW, 1985. The blood-brain barrier. Transport across the cerebral endotheliumCirc Res 57:213–222

    PubMed  CAS  Google Scholar 

  5. Gloor SM, Wachtel M, Bolliger MF, Ishihara H, Landmann R, Frei K, 2001. Molecular and cellular permeability control at the blood-brain barrierBrain Res Brain Res Rev 36:258–264

    Article  PubMed  CAS  Google Scholar 

  6. Gladson CL, 1999. The extracellular matrix of gliomas: modulation of cell functionJ Neuropathol Exp Neurol 58:1029–1040

    PubMed  CAS  Google Scholar 

  7. Mahesparan R, Read TA, Lund-Johansen M, Skaftnesmo KO, Bjerkvig R, Engebraaten O, 2003. Expression of extracellular matrix components in a highly infiltrative in vivo glioma modelActa Neuropathol (Berl) 105:49–57

    CAS  Google Scholar 

  8. Davies DC, 2002. Blood-brain barrier breakdown in septic encephalopathy and brain tumoursJ Anat 200:639–646

    Article  PubMed  CAS  Google Scholar 

  9. Coomber BL, Stewart PA, Hayakawa K, Farrell CL, Del Maestro RF, 1987. Quantitative morphology of human glioblastoma multiforme microvessels: structural basis of blood-brain barrier defectJ Neurooncol 5:299–307

    Article  PubMed  CAS  Google Scholar 

  10. Nag S, 2003. Pathophysiology of blood-brain barrier breakdownMethods Mol Med 89:97–119

    PubMed  CAS  Google Scholar 

  11. Oliveira R, Christov C, Guillamo JS, Debouard S, Palfi S, Venance L, Tardy M, Peschanski M, 2005. Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomasBMC Cell Biol 6:7

    Article  PubMed  CAS  Google Scholar 

  12. Henson JW, Gaviani P, Gonzalez RG, 2005. MRI in treatment of adult gliomasLancet Oncol 6:167–175

    Article  PubMed  Google Scholar 

  13. Demuth T, Berens ME, 2004. Molecular mechanisms of glioma cell migration and invasionJ Neurooncol 70:217–228

    Article  PubMed  Google Scholar 

  14. Giese A, Bjerkvig R, Berens ME, Westphal M, 2003. Cost of migration: invasion of malignant gliomas and implications for treatmentJ Clin Oncol 21:1624–1636

    Article  PubMed  CAS  Google Scholar 

  15. Mourad PD, Farrell L, Stamps LD, Chicoine MR, Silbergeld DL, 2005. Why are systemic glioblastoma metastases rare? Systemic and cerebral growth of mouse glioblastomaSurg Neurol 63:511–519discussion 519

    Article  PubMed  Google Scholar 

  16. Bolteus AJ, Berens ME, Pilkington GJ, 2001. Migration and invasion in brain neoplasmsCurr Neurol Neurosci Rep 1:225–232

    Article  PubMed  CAS  Google Scholar 

  17. Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG, 2004. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasionInt J Biochem Cell Biol 36:1046–1069

    Article  PubMed  CAS  Google Scholar 

  18. Desjardins A, Rich JN, Quinn JA, Vredenburgh J, Gururangan S, Sathornsumetee S, Reardon DA, Friedman AH, Bigner DD, Friedman HS, 2005. Chemotherapy and novel therapeutic approaches in malignant gliomaFront Biosci 10:2645–2668

    Article  PubMed  CAS  Google Scholar 

  19. Fujimaki T, 2005. Surgical treatment of brain metastasisInt J Clin Oncol 10:74–80

    Article  PubMed  Google Scholar 

  20. Gilbert MR, Loghin M, 2005. The Treatment of Malignant GliomasCurr Treat Options Neurol 7:293–303

    Article  PubMed  Google Scholar 

  21. Nabors LB, Fiveash J, 2005. Treatment of adults with recurrent malignant gliomaExpert Rev Neurother 5:509–514

    Article  PubMed  CAS  Google Scholar 

  22. Berens ME, Giese A, 1999. “...those left behind.” Biology and oncology of invasive glioma cellsNeoplasia 1:208–219

    Article  PubMed  CAS  Google Scholar 

  23. Lampson LA, Lampson MA, Dunne AD, 1993. Exploiting the lacZ reporter gene for quantitative analysis of disseminated tumor growth within the brain: use of the lacZ gene product as a tumor antigen, for evaluation of antigenic modulation, and to facilitate image analysis of tumor growth in situCancer Res 53:176–182

    PubMed  CAS  Google Scholar 

  24. Owens GC, Orr EA, DeMasters BK, Muschel RJ, Berens ME, Kruse CA, 1998. Overexpression of a transmembrane isoform of neural cell adhesion molecule alters the invasiveness of rat CNS-1 gliomaCancer Res 58:2020–2028

    PubMed  CAS  Google Scholar 

  25. Pedersen PH, Edvardsen K, Garcia-Cabrera I, Mahesparan R, Thorsen J, Mathisen B, Rosenblum ML, Bjerkvig R, 1995. Migratory patterns of lac-z transfected human glioma cells in the rat brainInt J Cancer 62:767–771

    Article  PubMed  CAS  Google Scholar 

  26. Prados MD, Berger MS, Wilson CB, 1998. Primary central nervous system tumors: advances in knowledge and treatmentCA Cancer J Clin 48:331–360, 321

    PubMed  CAS  Google Scholar 

  27. MacDonald TJ, Tabrizi P, Shimada H, Zlokovic BV, Laug WE, 1998. Detection of brain tumor invasion and micrometastasis in vivo by expression of enhanced green fluorescent proteinNeurosurgery 43:1437–1442discussion 1442–1433

    Article  PubMed  CAS  Google Scholar 

  28. Mourad PD, Farrell L, Stamps LD, Santiago P, Fillmore HL, Broaddus WC, Silbergeld DL. 2003. Quantitative assessment of glioblastoma invasion in vivoCancer Lett 192:97–107

    Article  PubMed  CAS  Google Scholar 

  29. Bello L, Giussani C, Carrabba G, Pluderi M, Costa F, Bikfalvi A. 2004. Angiogenesis and invasion in gliomasCancer Treat Res 117:263–284

    PubMed  CAS  Google Scholar 

  30. Tonn JC, Goldbrunner R. 2003. Mechanisms of glioma cell invasionActa Neurochir Suppl 88:163–167

    PubMed  CAS  Google Scholar 

  31. Lefranc F, Brotchi J, Kiss R. 2005. Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosisJ Clin Oncol 23:2411–2422

    Article  PubMed  CAS  Google Scholar 

  32. Jensen RL. 1998. Growth factor-mediated angiogenesis in the malignant progression of glial tumors: a reviewSurg Neurol 49:189–195discussion 196

    Article  PubMed  CAS  Google Scholar 

  33. Berkman RA, Merrill MJ, Reinhold WC, Monacci WT, Saxena A, Clark WC, Robertson JT, Ali IU, Oldfield EH, 1993. Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasmsJ Clin Invest 91:153–159

    PubMed  CAS  Google Scholar 

  34. Machein MR, Plate KH, 2000. VEGF in brain tumorsJ Neurooncol 50:109–120

    Article  PubMed  CAS  Google Scholar 

  35. Ferrara N, Gerber HP, LeCouter J, 2003. The biology of VEGF and its receptorsNat Med 9:669–676

    Article  PubMed  CAS  Google Scholar 

  36. Autiero M, Waltenberger J, Communi D, Kranz A, Moons L, Lambrechts D, Kroll J, Plaisance S, De Mol M, Bono F, et al., 2003. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1Nat Med 9:936–943

    Article  PubMed  CAS  Google Scholar 

  37. Vaquero J, Zurita M, Morales C, Cincu R, Oya S, 2000. Expression of vascular permeability factor in glioblastoma specimens: correlation with tumor vascular endothelial surface and peritumoral edemaJ Neurooncol 49:49–55

    Article  PubMed  CAS  Google Scholar 

  38. Harhaj NS, Antonetti DA, 2004. Regulation of tight junctions and loss of barrier function in pathophysiologyInt J Biochem Cell Biol 36:1206–1237

    Article  PubMed  CAS  Google Scholar 

  39. Schneider SW, Ludwig T, Tatenhorst L, Braune S, Oberleithner H, Senner V, Paulus W, 2004. Glioblastoma cells release factors that disrupt blood-brain barrier featuresActa Neuropathol (Berl) 107:272–276

    Article  Google Scholar 

  40. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA, 1999. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeabilityMol Cell 4:915–924

    Article  PubMed  CAS  Google Scholar 

  41. Criscuoli ML, Nguyen M, Eliceiri BP, 2005. Tumor metastasis but not tumor growth is dependent on Src-mediated vascular permeabilityBlood 105:1508–1514

    Article  PubMed  CAS  Google Scholar 

  42. Chen J, Lansford R, Stewart V, Young F, Alt FW, 1993. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte developmentProc Natl Acad Sci U S A 90:4528–4532

    Article  PubMed  CAS  Google Scholar 

  43. Hochedlinger K, Blelloch R, Brennan C, Yamada Y, Kim M, Chin L, Jaenisch R, 2004. Reprogramming of a melanoma genome by nuclear transplantationGenes Dev 18:1875–1885

    Article  PubMed  CAS  Google Scholar 

  44. Mazurier F, Fontanellas A, Salesse S, Taine L, Landriau S, Moreau-Gaudry F, Reiffers J, Peault B, Di Santo JP, de Verneuil H, 1999. A novel immunodeficient mouse model – RAG2 x common cytokine receptor gamma chain double mutants – requiring exogenous cytokine administration for human hematopoietic stem cell engraftmentJ Interferon Cytokine Res 19:533–541

    Article  PubMed  CAS  Google Scholar 

  45. Mattern RH, Read SH, Pierschbacher MD, Sze CI, Eliceiri B, Kruse CA, 2005. Glioma cell integrin expression and their interactions with integrin antagonistsCancer Therapy 3:325–340

    Google Scholar 

  46. Curran MA, Kaiser SM, Achacoso PL, Nolan GP, 2000. Efficient transduction of nondividing cells by optimized feline immunodeficiency virus vectorsMol Ther 1:31–38

    Article  PubMed  CAS  Google Scholar 

  47. Lipinski CA, Tran NL, Menashi E, Rohl C, Kloss J, Bay RC, Berens ME, Loftus JC, 2005. The tyrosine kinase pyk2 promotes migration and invasion of glioma cellsNeoplasia 7:435–445

    Article  PubMed  CAS  Google Scholar 

  48. Zhang X, Li X, Wu JW, Gao DK, Liang JW, Liu XZ, 2002. Experiment and observation on invasion of brain glioma in vivo J Clin Neurosci 9:668–671

    Article  PubMed  Google Scholar 

  49. Degen JL, Palumbo JS, 2003. Mechanisms linking hemostatic factors to tumor growth in micePathophysiol Haemost Thromb 33(Suppl 1):31–35

    Article  PubMed  Google Scholar 

  50. Staton CA, Brown NJ, Lewis CE, 2003. The role of fibrinogen and related fragments in tumour angiogenesis and metastasisExpert Opin Biol Ther 3:1105–1120

    Article  PubMed  CAS  Google Scholar 

  51. Wojtukiewicz MZ, Sierko E, Rak J, 2004. Contribution of the hemostatic system to angiogenesis in cancerSemin Thromb Hemost 30:5–20

    Article  PubMed  CAS  Google Scholar 

  52. Stupp R, van den Bent MJ, Hegi ME, 2005. Optimal role of temozolomide in the treatment of malignant gliomasCurr Neurol Neurosci Rep 5:198–206

    Article  PubMed  CAS  Google Scholar 

  53. Thorsen F, Tysnes BB, 1997. Brain tumor cell invasion, anatomical and biological considerationsAnticancer Res 17:4121–4126

    PubMed  CAS  Google Scholar 

  54. Hansen-Algenstaedt N, Joscheck C, Schaefer C, Lamszus K, Wolfram L, Biermann T, Algenstaedt P, Brockmann MA, Heintz C, Fiedler W, et al., 2005. Long-term observation reveals time-course-dependent characteristics of tumour vascularisationEur J Cancer 41:1073–1085

    Article  PubMed  Google Scholar 

  55. Brockmann MA, Ulbricht U, Gruner K, Fillbrandt R, Westphal M, Lamszus K, 2003. Glioblastoma and cerebral microvascular endothelial cell migration in response to tumor-associated growth factorsNeurosurgery 52:1391–1399discussion 1399

    Article  PubMed  Google Scholar 

  56. Kaur B, Tan C, Brat DJ, Post DE, Van Meir EG, 2004. Genetic and hypoxic regulation of angiogenesis in gliomasJ Neurooncol 70:229–243

    Article  PubMed  Google Scholar 

  57. Lamszus K, Heese O, Westphal M, 2004. Angiogenesis-related growth factors in brain tumorsCancer Treat Res 117:169–190

    PubMed  CAS  Google Scholar 

  58. Dunn IF, Heese O, Black PM, 2000. Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFsJ Neurooncol 50:121–137

    Article  PubMed  CAS  Google Scholar 

  59. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen N, Chopp M, 2000. VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brainJ Clin Invest 106:829–838

    Article  PubMed  CAS  Google Scholar 

  60. Paul R, Zhang ZG, Eliceiri BP, Jiang Q, Boccia AD, Zhang RL, Chopp M, Cheresh DA, 2001. Src deficiency or blockade of Src activity in mice provides cerebral protection following strokeNat Med 7:222–227

    Article  PubMed  CAS  Google Scholar 

  61. Zhang ZG, Zhang L, Tsang W, Soltanian-Zadeh H, Morris D, Zhang R, Goussev A, Powers C, Yeich T, Chopp M, 2002. Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemiaJ Cereb Blood Flow Metab 22:379–392

    Article  PubMed  CAS  Google Scholar 

  62. Armanios MY, Grossman SA, Yang SC, White B, Perry A, Burger PC, Orens JB, 2004. Transmission of glioblastoma multiforme following bilateral lung transplantation from an affected donor: case study and review of the literatureNeurooncol 6:259–263

    Google Scholar 

  63. Kunkel P, Ulbricht U, Bohlen P, Brockmann MA, Fillbrandt R, Stavrou D, Westphal M, Lamszus K, 2001. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2Cancer Res 61:6624–6628

    PubMed  CAS  Google Scholar 

  64. Bardos H, Molnar P, Csecsei G, Adany R, 1996. Fibrin deposition in primary and metastatic human brain tumoursBlood Coagul Fibrinolysis 7:536–548

    Article  PubMed  CAS  Google Scholar 

  65. Yumitori K, Handa H, Teraura T, Yamashita J, Yamamura K, 1987. Metastatic brain tumour and fibrinopeptidesActa Neurochir (Wien) 89:43–47

    Article  CAS  Google Scholar 

  66. Sawaya R, Mandybur T, Ormsby I, Tew JM, Jr., 1986. Antifibrinolytic therapy of experimentally grown malignant brain tumorsJ Neurosurg 64:263–268

    PubMed  CAS  Google Scholar 

  67. Westhoff MA, Serrels B, Fincham VJ, Frame MC, Carragher NO, 2004. SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signalingMol Cell Biol 24:8113–8133

    Article  PubMed  CAS  Google Scholar 

  68. Campbell ID, 2003. Modular proteins at the cell surfaceBiochem Soc Trans 31:1107–1114

    Article  PubMed  CAS  Google Scholar 

  69. Shattil SJ, 2005. Integrins and Src: dynamic duo of adhesion signalingTrends Cell Biol 15:399–403

    Article  PubMed  CAS  Google Scholar 

  70. Courter DL, Lomas L, Scatena M, Giachelli CM, 2005. Src kinase activity is required for integrin alphaVbeta3-mediated activation of nuclear factor-kappaBJ Biol Chem 280:12145–12151

    Article  PubMed  CAS  Google Scholar 

  71. Playford MP, Schaller MD, 2004. The interplay between Src and integrins in normal and tumor biologyOncogene 23:7928–7946

    Article  PubMed  CAS  Google Scholar 

  72. Wu X, Gan B, Yoo Y, Guan JL, 2005. FAK-Mediated Src Phosphorylation of Endophilin A2 Inhibits Endocytosis of MT1-MMP and Promotes ECM DegradationDev Cell 9:185–196

    Article  PubMed  CAS  Google Scholar 

  73. Labrecque L, Nyalendo C, Langlois S, Durocher Y, Roghi C, Murphy G, Gingras D, Beliveau R, 2004. Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinaseJ Biol Chem 279:52132–52140

    Article  PubMed  CAS  Google Scholar 

  74. Sounni NE, Roghi C, Chabottaux V, Janssen M, Munaut C, Maquoi E, Galvez BG, Gilles C, Frankenne F, Murphy G, et al., 2004. Up-regulation of vascular endothelial growth factor-A by active membrane-type 1 matrix metalloproteinase through activation of Src-tyrosine kinasesJ Biol Chem 279:13564–13574

    Article  PubMed  CAS  Google Scholar 

  75. Nadav L, Katz BZ, 2001. The molecular effects of oncogenesis on cell-extracellular matrix adhesion (review)Int J Oncol 19:237–246

    PubMed  CAS  Google Scholar 

  76. Yang Y, Dang D, Mogi S, Ramos DM, 2004. Tenascin-C deposition requires beta3 integrin and SrcBiochem Biophys Res Commun 322:935–942

    Article  PubMed  CAS  Google Scholar 

  77. Eliceiri BP, Puente XS, Hood JD, Stupack DG, Schlaepfer DD, Huang XZ, Sheppard D, Cheresh DA, 2002. Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signalingJ Cell Biol 157:149–160

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mario A. Bourdon and Carole A. Banka for critical reading of this manuscript. Grant support from the NHLBI (B.P.E) and the NINDS (C.A.K.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Eliceiri.

Additional information

These authors contributed equally to these studies

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lund, C.V., Nguyen, M.T.N., Owens, G.C. et al. Reduced Glioma Infiltration in Src-deficient Mice. J Neurooncol 78, 19–29 (2006). https://doi.org/10.1007/s11060-005-9068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-005-9068-y

Keywords

Navigation