Skip to main content

Advertisement

Log in

Glutamoyl diester of the dietary polyphenol curcumin offers improved protection against peroxynitrite-mediated nitrosative stress and damage of brain mitochondria in vitro: implications for Parkinson’s disease

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oxidative/nitrosative stress plays a crucial role in Parkinson’s disease (PD) by triggering mitochondrial dysfunction. Nitrosative stress is mediated by reactive species such as peroxynitrite (PN) which could damage biomolecules thereby impinging on the cellular machinery. We observed that PN (0–1000 μM) inhibited brain mitochondrial complex I (CI) activity in a dose-dependent manner with concomitant tyrosine nitration of proteins. We also observed that exposure to PN at low concentrations (62.5–125 μM) significantly decreased the mitochondrial membrane potential and affected the mitochondrial integrity at higher doses (500–750 μM) as indicated by the mitochondrial swelling experiment. Therefore, it could be surmised that compounds that prevent such mitochondrial damage might have therapeutic value in neurological conditions such as PD. We previously showed that curcumin could detoxify PN and protect against CI inhibition and protein nitration. However, the therapeutic potential of curcumin is constrained by limited bioavailability. To address this issue and obtain improved antioxidants, three bioconjugates of curcumin (Di-demethylenated piperoyl, di-valinoyl and di-glutamoyl esters) were generated and tested against PN-mediated nitrosative stress and mitochondrial damage. We found that among the bioconjugates, the glutamoyl diester of curcumin showed improved protection against PN-dependent CI inhibition and protein nitration compared to other conjugates. Di-glutamoyl curcumin protected dopaminergic neurons against 1-methyl-4-phenylpyridinium (MPP+)-mediated neuronal death. These effects were improved compared to curcumin alone suggesting that di-glutamoyl curcumin could be a better neuroprotective agent in neurodegenerative diseases such as PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

SN:

Substantia nigra

NO:

Nitric oxide

PN:

Peroxynitrite

CI:

Mitochondrial complex I

3-NT:

3-nitrotyrosine

RNS:

Reactive nitrogen species

GSH:

Glutathione

PTP:

Permeability transition pore

∆Ψm :

Mitochondrial membrane potential

JC-1:

5,5′,6,6′-Tetrachloro-1,1′3,3′-tetra ethyl benzimidazolyl carbocyanine iodide

D1:

Di-demethylenated piperoyl curcumin

D2:

Di-valinoyl curcumin

D3:

Di-glutamoyl curcumin

References

  1. Diaz NL, Waters CH (2009) Current strategies in the treatment of Parkinson’s disease and a personalized approach to management. Expert Rev Neurother 9:1781–1789

    Article  CAS  PubMed  Google Scholar 

  2. Adams JD Jr, Chang ML, Klaidman L (2001) Parkinson’s disease—redox mechanisms. Curr Med Chem 8:809–814

    CAS  PubMed  Google Scholar 

  3. Beal MF (1996) Mitochondria, free radicals, and neurodegeneration. Curr Opin Neurobiol 6:661–666

    Article  CAS  PubMed  Google Scholar 

  4. Nohl H, Jordan W, Hegner D (1981) Identification of free hydroxyl radicals in respiring rat heart mitochondria by spin trapping with the nitrone DMPO. FEBS Lett 123:241–244

    Article  CAS  PubMed  Google Scholar 

  5. Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414

    Article  CAS  PubMed  Google Scholar 

  6. Gokulrangan G, Zaidi A, Michaelis ML, Schoneich C (2007) Proteomic analysis of protein nitration in rat cerebellum: effect of biological aging. J Neurochem 100:1494–1504

    CAS  PubMed  Google Scholar 

  7. Danielson SR, Andersen JK (2008) Oxidative and nitrative protein modifications in Parkinson’s disease. Free Radic Biol Med 44:1787–1794

    Article  CAS  PubMed  Google Scholar 

  8. Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17:2653–2657

    CAS  PubMed  Google Scholar 

  9. Clementi E, Brown GC, Feelisch M, Moncada S (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 95:7631–7636

    Article  CAS  PubMed  Google Scholar 

  10. Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA (2003) Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J Biol Chem 278:37223–37230

    Article  CAS  PubMed  Google Scholar 

  11. Mythri RB, Jagatha B, Pradhan N, Andersen J, Bharath MM (2007) Mitochondrial complex I inhibition in Parkinson’s disease: how can curcumin protect mitochondria? Antioxid Redox Signal 9:399–408

    Article  CAS  PubMed  Google Scholar 

  12. Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. Adv Exp Med Biol 595:1–75

    Article  PubMed  Google Scholar 

  13. Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398

    CAS  PubMed  Google Scholar 

  14. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377

    CAS  PubMed  Google Scholar 

  15. Thiyagarajan M, Sharma SS (2004) Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci 74:969–985

    Article  CAS  PubMed  Google Scholar 

  16. Jagatha B, Mythri RB, Vali S, Bharath MM (2008) Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radic Biol Med 44:907–917

    Article  CAS  PubMed  Google Scholar 

  17. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818

    Article  CAS  PubMed  Google Scholar 

  18. Dubey SK, Sharma AK, Narain U, Misra K, Pati U (2008) Design, synthesis and characterization of some bioactive conjugates of curcumin with glycine, glutamic acid, valine and demethylenated piperic acid and study of their antimicrobial and antiproliferative properties. Eur J Med Chem 43:1837–1846

    Article  CAS  PubMed  Google Scholar 

  19. Harish G, Venkateshappa C, Mythri RB, Dubey SK, Mishra K, Singh N, Vali S, Bharath MM (2010) Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: implications for Parkinson’s disease. Bioorg Med Chem 18:2631–2638

    Article  CAS  PubMed  Google Scholar 

  20. Chinopoulos C, Tretter L, Adam-Vizi V (1999) Depolarization of in situ mitochondria due to hydrogen peroxide-induced oxidative stress in nerve terminals: inhibition of alpha-ketoglutarate dehydrogenase. J Neurochem 73:220–228

    Article  CAS  PubMed  Google Scholar 

  21. Shimizu S, Eguchi Y, Kamiike W, Funahashi Y, Mignon A, Lacronique V, Matsuda H, Tsujimoto Y (1998) Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux. Proc Natl Acad Sci USA 95:1455–1459

    Article  CAS  PubMed  Google Scholar 

  22. Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  CAS  PubMed  Google Scholar 

  23. Rigobello MP, Folda A, Scutari G, Bindoli A (2005) The modulation of thiol redox state affects the production and metabolism of hydrogen peroxide by heart mitochondria. Arch Biochem Biophys 441:112–122

    Article  CAS  PubMed  Google Scholar 

  24. Vali S, Mythri RB, Jagatha B, Padiadpu J, Ramanujan KS, Andersen JK, Gorin F, Bharath MM (2007) Integrating glutathione metabolism and mitochondrial dysfunction with implications for Parkinson’s disease: a dynamic model. Neuroscience 149:917–930

    Article  CAS  PubMed  Google Scholar 

  25. Reers M, Smith TW, Chen LB (1991) J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30:4480–4486

    Article  CAS  PubMed  Google Scholar 

  26. Iwunze MO, McEwan D (2004) Peroxynitrite interaction with curcumin solubilized in ethanolic solution. Cell Mol Biol (Noisy-le-grand) 50:749–752

    CAS  Google Scholar 

  27. Koeck T, Fu X, Hazen SL, Crabb JW, Stuehr DJ, Aulak KS (2004) Rapid and selective oxygen-regulated protein tyrosine denitration and nitration in mitochondria. J Biol Chem 279:27257–27262

    Article  CAS  PubMed  Google Scholar 

  28. Sacksteder CA, Qian WJ, Knyushko TV, Wang H, Chin MH, Lacan G, Melega WP, Camp DG II, Smith RD, Smith DJ, Squier TC, Bigelow DJ (2006) Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease. Biochemistry 45:8009–8022

    Article  CAS  PubMed  Google Scholar 

  29. Chandana R, Mythri RB, Mahadevan A, Shankar SK, Srinivas Bharath MM (2009) Biochemical analysis of protein stability in human brain collected at different post-mortem intervals. Indian J Med Res 129:189–199

    CAS  PubMed  Google Scholar 

  30. Olas B, Nowak P, Wachowicz B (2004) Resveratrol protects against peroxynitrite-induced thiol oxidation in blood platelets. Cell Mol Biol Lett 9:577–587

    CAS  PubMed  Google Scholar 

  31. Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    Article  CAS  PubMed  Google Scholar 

  32. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64:353–356

    Article  CAS  PubMed  Google Scholar 

  33. Sinko PJ, Balimane PV (1998) Carrier-mediated intestinal absorption of valacyclovir, the L-valyl ester prodrug of acyclovir: 1. Interactions with peptides, organic anions and organic cations in rats. Biopharm Drug Dispos 19:209–217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a fast-track grant to M.M.S.B. from the Department of Science and Technology, India. RBM is a senior research fellow of Council for Scientific and Industrial Research, India. GH is a junior research fellow of Indian Council for Medical Research, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Srinivas Bharath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mythri, R.B., Harish, G., Dubey, S.K. et al. Glutamoyl diester of the dietary polyphenol curcumin offers improved protection against peroxynitrite-mediated nitrosative stress and damage of brain mitochondria in vitro: implications for Parkinson’s disease. Mol Cell Biochem 347, 135–143 (2011). https://doi.org/10.1007/s11010-010-0621-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0621-4

Keywords

Navigation