Skip to main content

Advertisement

Log in

Mechanical Loading by Fluid Shear Stress of Myotube Glycocalyx Stimulates Growth Factor Expression and Nitric Oxide Production

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Skeletal muscle fibers have the ability to increase their size in response to a mechanical overload. Finite element modeling data suggest that mechanically loaded muscles in vivo may experience not only tensile strain but also shear stress. However, whether shear stress affects biological pathways involved in muscle fiber size adaptation in response to mechanical loading is unknown. Therefore, our aim was twofold: (1) to determine whether shear stress affects growth factor expression and nitric oxide (NO) production by myotubes, and (2) to explore the mechanism by which shear stress may affect myotubes in vitro. C2C12 myotubes were subjected to a laminar pulsating fluid flow (PFF; mean shear stress 0.4, 0.7 or 1.4 Pa, 1 Hz) or subjected to uni-axial cyclic strain (CS; 15 % strain, 1 Hz) for 1 h. NO production during 1-h PFF or CS treatment was quantified using Griess reagent. The glycocalyx was degraded using hyaluronidase, and stretch-activated ion channels (SACs) were blocked using GdCl3. Gene expression was analyzed immediately after 1-h PFF (1.4 Pa, 1 Hz) and at 6 h post-PFF treatment. PFF increased IGF-I Ea, MGF, VEGF, IL-6, and COX-2 mRNA, but decreased myostatin mRNA expression. Shear stress enhanced NO production in a dose-dependent manner, while CS induced no quantifiable increase in NO production. Glycocalyx degradation and blocking of SACs ablated the shear stress-stimulated NO production. In conclusion, shear stress activates signaling pathways involved in muscle fiber size adaptation in myotubes, likely via membrane-bound mechanoreceptors. These results suggest that shear stress exerted on myofiber extracellular matrix plays an important role in mechanotransduction in muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huijing, P. A., & Jaspers, R. T. (2005). Adaptation of muscle size and myofascial force transmission: A review and some new experimental results. Scandinavian Journal of Medicine and Science in Sports, 15, 349–380.

    Article  CAS  PubMed  Google Scholar 

  2. Rittweger, J., & Felsenberg, D. (2009). Recovery of muscle atrophy and bone loss from 90 days bed rest: Results from a 1 year follow-up. Bone, 44, 214–224.

    Article  CAS  PubMed  Google Scholar 

  3. Weinbaum, S., Tarbell, J. M., & Damiano, E. R. (2007). The structure and function of the endothelial glycocalyx layer. Annual Review of Biomedical Engineering, 9, 121–167.

    Article  CAS  PubMed  Google Scholar 

  4. Tarbell, J. M., & Shi, Z. D. (2013). Effect of the glycocalyx layer on transmission of interstitial flow shear stress to embedded cells. Biomechanics and Modeling in Mechanobiology, 12, 111–121.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Burkholder, T. J. (2007). Mechanotransduction in skeletal muscle. Frontiers in Bioscience, 12, 174–191.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ingber, D. E. (2006). Cellular mechanotransduction: Putting all the pieces together again. FASEB Journal, 20, 811–827.

    Article  CAS  PubMed  Google Scholar 

  7. van Wessel, T., de Haan, A., van der Laarse, W. J., & Jaspers, R. T. (2010). The muscle fiber type-fiber size paradox: Hypertrophy or oxidative metabolism? European Journal of Applied Physiology, 110, 665–694.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Williams, P. E., & Goldspink, G. (1978). Changes in sarcomere length and physiological properties in immobilized muscle. Journal of Anatomy, 127, 459–468.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Yang, H., Alnaqeeb, M., Simpson, H., & Goldspink, G. (1997). Changes in muscle fibre type, muscle mass and IGF-I gene expression in rabbit skeletal muscle subjected to stretch. Journal of Anatomy, 190(Pt 4), 613–622.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Goldberg, A. L., Etlinger, J. D., Goldspink, D. F., & Jablecki, C. (1975). Mechanism of work-induced hypertrophy of skeletal muscle. Medicine and Science in Sports and Exercise, 7, 185–198.

    Article  CAS  Google Scholar 

  11. Soares, A. G., Aoki, M. S., Miyabara, E. H., Deluca, C. V., Ono, H. Y., Gomes, M. D., et al. (2007). Ubiquitin-ligase and deubiquitinating gene expression in stretched rat skeletal muscle. Muscle and Nerve, 36, 685–693.

    Article  CAS  PubMed  Google Scholar 

  12. Jaspers, R. T., Feenstra, H. M., van Beek-Harmsen, B. J., Huijing, P. A., & van der Laarse, W. J. (2006). Differential effects of muscle fibre length and insulin on muscle-specific mRNA content in isolated mature muscle fibres during long-term culture. Cell and Tissue Research, 326, 795–808.

    Article  CAS  PubMed  Google Scholar 

  13. Jaspers, R. T., Feenstra, H. M., Verheyen, A. K., van der Laarse, W. J., & Huijing, P. A. (2004). Effects of strain on contractile force and number of sarcomeres in series of Xenopus laevis single muscle fibres during long-term culture. Journal of Muscle Research and Cell Motility, 25, 285–296.

    Article  CAS  PubMed  Google Scholar 

  14. Jaspers, R. T., Brunner, R., Baan, G. C., & Huijing, P. A. (2002). Acute effects of intramuscular aponeurotomy and tenotomy on multitendoned rat EDL: Indications for local adaptation of intramuscular connective tissue. Anatomical Record, 266, 123–135.

    Article  CAS  PubMed  Google Scholar 

  15. Yucesoy, C. A., Koopman, B. H., Huijing, P. A., & Grootenboer, H. J. (2002). Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: Linked fiber-matrix mesh model. Journal of Biomechanics, 35, 1253–1262.

    Article  PubMed  Google Scholar 

  16. Reilly, G. C., Haut, T. R., Yellowley, C. E., Donahue, H. J., & Jacobs, C. R. (2003). Fluid flow induced PGE2 release by bone cells is reduced by glycocalyx degradation whereas calcium signals are not. Biorheology, 40, 591–603.

    CAS  PubMed  Google Scholar 

  17. Weinbaum, S., Zhang, X., Han, Y., Vink, H., & Cowin, S. C. (2003). Mechanotransduction and flow across the endothelial glycocalyx. Proceedings of the National Academy of Sciences of the United States of America, 100, 7988–7995.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Goldspink, G. (1999). Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. Journal of Anatomy, 194(Pt 3), 323–334.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Soltow, Q. A., Lira, V. A., Betters, J. L., Long, J. H., Sellman, J. E., Zeanah, E. H., et al. (2010). Nitric oxide regulates stretch-induced proliferation in C2C12 myoblasts. Journal of Muscle Research and Cell Motility, 31, 215–225.

    Article  CAS  PubMed  Google Scholar 

  20. Pennisi, C. P., Olesen, C. G., de Zee, M., Rasmussen, J., & Zachar, V. (2011). Uniaxial cyclic strain drives assembly and differentiation of skeletal myocytes. Tissue Engineering Part A, 17, 2543–2550.

    Article  PubMed  Google Scholar 

  21. Vandenburgh, H. H., Hatfaludy, S., Karlisch, P., & Shansky, J. (1991). Mechanically induced alterations in cultured skeletal muscle growth. Journal of Biomechanics, 24(Suppl 1), 91–99.

    Article  PubMed  Google Scholar 

  22. Ito, N., Ruegg, U. T., Kudo, A., Miyagoe-Suzuki, Y., & Takeda, S. (2013). Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nature Medicine, 19, 101–106.

    Article  CAS  PubMed  Google Scholar 

  23. Shi, Z. D., & Tarbell, J. M. (2011). Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Annals of Biomedical Engineering, 39, 1608–1619.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Goldspink, G. (2005). Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology (Bethesda), 20, 232–238.

    Article  CAS  Google Scholar 

  25. Egginton, S., Badr, I., Williams, J., Hauton, D., Baan, G. C., & Jaspers, R. T. (2011). Physiological angiogenesis is a graded, not threshold, response. Journal of Physiology, 589, 195–206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. McCroskery, S., Thomas, M., Maxwell, L., Sharma, M., & Kambadur, R. (2003). Myostatin negatively regulates satellite cell activation and self-renewal. Journal of Cell Biology, 162, 1135–1147.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Serrano, A. L., Baeza-Raja, B., Perdiguero, E., Jardi, M., & Munoz-Canoves, P. (2008). Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metabolism, 7, 33–44.

    Article  CAS  PubMed  Google Scholar 

  28. Soltow, Q. A., Betters, J. L., Sellman, J. E., Lira, V. A., Long, J. H., & Criswell, D. S. (2006). Ibuprofen inhibits skeletal muscle hypertrophy in rats. Medicine and Science in Sports and Exercise, 38, 840–846.

    Article  CAS  PubMed  Google Scholar 

  29. Choi, S., Liu, X., Li, P., Akimoto, T., Lee, S. Y., Zhang, M., et al. (2005). Transcriptional profiling in mouse skeletal muscle following a single bout of voluntary running: evidence of increased cell proliferation. Journal of Applied Physiology, 99, 2406–2415.

    Article  CAS  PubMed  Google Scholar 

  30. Heinemeier, K. M., Olesen, J. L., Schjerling, P., Haddad, F., Langberg, H., Baldwin, K. M., et al. (2007). Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types. Journal of Applied Physiology, 102, 573–581.

    Article  CAS  PubMed  Google Scholar 

  31. Keller, P., Keller, C., Carey, A. L., Jauffred, S., Fischer, C. P., Steensberg, A., et al. (2003). Interleukin-6 production by contracting human skeletal muscle: Autocrine regulation by IL-6. Biochemical and Biophysical Research Communications, 310, 550–554.

    Article  CAS  PubMed  Google Scholar 

  32. Yaffe, D., & Saxel, O. (1977). Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature, 270, 725–727.

    Article  CAS  PubMed  Google Scholar 

  33. Klein-Nulend, J., Semeins, C. M., Ajubi, N. E., Nijweide, P. J., & Burger, E. H. (1995). Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts–correlation with prostaglandin upregulation. Biochemical and Biophysical Research Communications, 217, 640–648.

    Article  CAS  PubMed  Google Scholar 

  34. Juffer, P., Jaspers, R. T., Bakker, A. D., & Klein-Nulend, J. (2014). Fluid flow and strain in bone, Chap. 37. In H. Simpson & P. Augat (Eds.), Experimental research methods—A guidebook for pre-clinical musculo-skeletal studies. Stuttgart: Thieme.

  35. Hara, M., Tabata, K., Suzuki, T., Do, M. K., Mizunoya, W., Nakamura, M., et al. (2012). Calcium influx through a possible coupling of cation channels impacts skeletal muscle satellite cell activation in response to mechanical stretch. The American Journal of Physiology—Cell Physiology, 302, C1741–C1750.

    Article  CAS  Google Scholar 

  36. Nakamura, T. Y., Iwata, Y., Sampaolesi, M., Hanada, H., Saito, N., Artman, M., et al. (2001). Stretch-activated cation channels in skeletal muscle myotubes from sarcoglycan-deficient hamsters. American Journal of Physiology—Cell Physiology, 281, C690–C699.

    CAS  PubMed  Google Scholar 

  37. Juffer, P., Jaspers, R. T., Lips, P., Bakker, A. D., & Klein-Nulend, J. (2012). Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes. The American Journal of Physiology—Endocrinology and Metabolism, 302, E389–E395.

    Article  CAS  Google Scholar 

  38. Chien, S., Li, S., & Shyy, Y. J. (1998). Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension, 31, 162–169.

    Article  CAS  PubMed  Google Scholar 

  39. Olfert, I. M., Howlett, R. A., Tang, K., Dalton, N. D., Gu, Y., Peterson, K. L., et al. (2009). Muscle-specific VEGF deficiency greatly reduces exercise endurance in mice. Journal of Physiology, 587, 1755–1767.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Bryan, B. A., Walshe, T. E., Mitchell, D. C., Havumaki, J. S., Saint-Geniez, M., Maharaj, A. S., et al. (2008). Coordinated vascular endothelial growth factor expression and signaling during skeletal myogenic differentiation. Molecular Biology of the Cell, 19, 994–1006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Einhorn, T. A. (2003). Cox-2: Where are we in 2003?—The role of cyclooxygenase-2 in bone repair. Arthritis Research and Therapy, 5, 5–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Weinheimer, E. M., Jemiolo, B., Carroll, C. C., Harber, M. P., Haus, J. M., Burd, N. A., et al. (2007). Resistance exercise and cyclooxygenase (COX) expression in human skeletal muscle: Implications for COX-inhibiting drugs and protein synthesis. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 292, R2241–R2248.

    CAS  PubMed  Google Scholar 

  43. McGarry, J. G., Klein-Nulend, J., Mullender, M. G., & Prendergast, P. J. (2005). A comparison of strain and fluid shear stress in stimulating bone cell responses–a computational and experimental study. FASEB Journal, 19, 482–484.

    CAS  PubMed  Google Scholar 

  44. Anderson, J. E. (2000). A role for nitric oxide in muscle repair: Nitric oxide-mediated activation of muscle satellite cells. Molecular Biology of the Cell, 11, 1859–1874.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Tidball, J. G., Lavergne, E., Lau, K. S., Spencer, M. J., Stull, J. T., & Wehling, M. (1998). Mechanical loading regulates NOS expression and activity in developing and adult skeletal muscle. American Journal of Physiology, 275, C260–C266.

    CAS  PubMed  Google Scholar 

  46. Tatsumi, R., Hattori, A., Ikeuchi, Y., Anderson, J. E., & Allen, R. E. (2002). Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Molecular Biology of the Cell, 13, 2909–2918.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Reid, M. B. (1998). Role of nitric oxide in skeletal muscle: Synthesis, distribution and functional importance. Acta Physiologica Scandinavica, 162, 401–409.

    Article  CAS  PubMed  Google Scholar 

  48. Stamler, J. S., & Meissner, G. (2001). Physiology of nitric oxide in skeletal muscle. Physiological Reviews, 81, 209–237.

    CAS  PubMed  Google Scholar 

  49. Loufrani, L., & Henrion, D. (2008). Role of the cytoskeleton in flow (shear stress)-induced dilation and remodeling in resistance arteries. Medical and Biological Engineering and Computing, 46, 451–460.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Nathan, C., & Xie, Q. W. (1994). Nitric oxide synthases: Roles, tolls, and controls. Cell, 78, 915–918.

    Article  CAS  PubMed  Google Scholar 

  51. Tatsumi, R., Wuollet, A. L., Tabata, K., Nishimura, S., Tabata, S., Mizunoya, W., et al. (2009). A role for calcium–calmodulin in regulating nitric oxide production during skeletal muscle satellite cell activation. American Journal of Physiology—Cell Physiology, 296, C922–C929.

    Article  CAS  PubMed  Google Scholar 

  52. Thi, M. M., Tarbell, J. M., Weinbaum, S., & Spray, D. C. (2004). The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proceedings of the National Academy of Sciences of the United States of America, 101, 16483–16488.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Hedbom, E., & Heinegard, D. (1993). Binding of fibromodulin and decorin to separate sites on fibrillar collagens. Journal of Biological Chemistry, 268, 27307–27312.

    CAS  PubMed  Google Scholar 

  54. Jarvinen, T. A., Jozsa, L., Kannus, P., Jarvinen, T. L., & Jarvinen, M. (2002). Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study. The Journal of Muscle Research and Cell Motility, 23, 245–254.

    Article  Google Scholar 

  55. Huijing, P. A., Yaman, A., Ozturk, C., & Yucesoy, C. A. (2011). Effects of knee joint angle on global and local strains within human triceps surae muscle: MRI analysis indicating in vivo myofascial force transmission between synergistic muscles. Surgical and Radiologic Anatomy, 33, 869–879.

    Article  PubMed Central  PubMed  Google Scholar 

  56. McCall, G. E., Allen, D. L., Haddad, F., & Baldwin, K. M. (2003). Transcriptional regulation of IGF-I expression in skeletal muscle. American Journal of Physiology—Cell Physiology, 285, C831–C839.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Jaspers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juffer, P., Bakker, A.D., Klein-Nulend, J. et al. Mechanical Loading by Fluid Shear Stress of Myotube Glycocalyx Stimulates Growth Factor Expression and Nitric Oxide Production. Cell Biochem Biophys 69, 411–419 (2014). https://doi.org/10.1007/s12013-013-9812-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9812-4

Keywords

Navigation