Skip to main content

Advertisement

Log in

Stiff matrices enhance myoblast proliferation, reduce differentiation, and alter the response to fluid shear stress in vitro

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

During myofiber regeneration, myoblasts are continuously subjected to shear stress. It is currently not known whether shear stress affects the regenerative capacity of myoblasts when extracellular matrix (ECM) stiffness increases (e.g. upon aging). Therefore, we aimed to assess (1) whether matrix stiffness and pulsating fluid shear stress affect myoblast proliferation and/or expression of differentiation-associated genes in myoblasts, and (2) whether matrix stiffness modulates the mechanoresponse of myoblasts to pulsating fluid shear stress. Myoblasts were seeded on matrigel-coated polyacrylamide gel matrices of varying stiffness, mimicking young (“soft”, 0.5 kPa) and old ECM (“stiff”, 20 kPa), as well as on matrigel-coated glass matrices with very high stiffness (40 ϺPa), and subjected to 1 h pulsating fluid shear stress (3 Pa/s or 4 Pa/s, 1 Hz). We found enhanced proliferation of myoblasts on stiff matrices, but reduced differentiation compared to myoblasts on soft matrices. Pulsating fluid shear stress significantly upregulated gene expression of proliferation-associated genes C-fos and Il-6, as well as expression of cytoskeletal α-actin in myoblasts seeded on glass. In contrast, pulsating fluid shear stress significantly downregulated gene expression of α-actin and Myogenin in myoblasts seeded on soft matrices. In conclusion, these results suggest that age and disease-associated increased ECM stiffness may contribute to declined regenerative capacity of myoblasts, by reducing their capacity to differentiate into new muscular tissue, at least in the absence of mechanical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. All graphs and plots corresponding to the datasets used in this study are included in this published article.

References

  1. Charrier, E. E., Montel, L., Asnacios, A., Delort, F., Vicart, P., Gallet, F., & Hénon, S. (2018). The desmin network is a determinant of the cytoplasmic stiffness of myoblasts. Biology of the Cell, 110(4), 77–90. https://doi.org/10.1111/boc.201700040.

    Article  CAS  PubMed  Google Scholar 

  2. Domingues-Faria, C., Vasson, M. P., Goncalves-Mendes, N., Boirie, Y., & Walrand, S. (2016). Skeletal muscle regeneration and impact of aging and nutrition. Ageing Research Reviews, 26, 22–36. https://doi.org/10.1016/j.arr.2015.12.004.

    Article  CAS  PubMed  Google Scholar 

  3. Blau, H. M., Cosgrove, B. D., & Ho, A. T. V. (2015). The central role of muscle stem cells in regenerative failure with aging. Nature Medicine, 21(8), 854–862. https://doi.org/10.1038/nm.3918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, H., Lin, S., Gao, T., Zhong, F., Cai, J., Sun, Y., & Ma, A. (2018). Association between sarcopenia and metabolic syndrome in middle-aged and older non-obese adults: A systematic review and meta-analysis. Nutrients, 10(3). https://doi.org/10.3390/nu10030364.

  5. Rudnicki, M. A., Le Grand, F., McKinnell, I., & Kuang, S. (2008). The molecular regulation of muscle stem cell function. In Cold Spring Harbor Symposia on Quantitative Biology (Vol. 73, pp. 323–331). https://doi.org/10.1101/sqb.2008.73.064.

  6. MAURO, A. (1961). Satellite cell of skeletal muscle fibers. The Journal of Biophysical and Biochemical Cytology, 9, 493–495. https://doi.org/10.1083/jcb.9.2.493.

  7. Forbes, S. J., & Rosenthal, N. (2014). Preparing the ground for tissue regeneration: from mechanism to therapy. Nature Medicine, 20(8), 857–869. https://doi.org/10.1038/nm.3653.

    Article  CAS  PubMed  Google Scholar 

  8. Dumont, N. A., Wang, Y. X., & Rudnicki, M. A. (2015). Intrinsic and extrinsic mechanisms regulating satellite cell function. Development (Cambridge), 142(9), 1572–1581. https://doi.org/10.1242/dev.114223.

    Article  CAS  Google Scholar 

  9. Le Grand, F., & Rudnicki, M. A. (2007). Skeletal muscle satellite cells and adult myogenesis. Current Opinion in Cell Biology. https://doi.org/10.1016/j.ceb.2007.09.012.

  10. Collins, C. A., Olsen, I., Zammit, P. S., Heslop, L., Petrie, A., Partridge, T. A., & Morgan, J. E. (2005). Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell, 122(2), 289–301. https://doi.org/10.1016/j.cell.2005.05.010.

    Article  CAS  PubMed  Google Scholar 

  11. Morgan, J. E., & Partridge, T. A. (2003). Muscle satellite cells. International Journal of Biochemistry and Cell Biology, 35(8), 1151–1156. https://doi.org/10.1016/S1357-2725(03)00042-6.

    Article  CAS  PubMed  Google Scholar 

  12. Yucesoy, C. A., Koopman, B. H. F. J. M., Baan, G. C., Grootenboer, H. J., & Huijing, P. A. (2003). Effects of inter- and extramuscular myofascial force transmission on adjacent synergistic muscles: Assessment by experiments and finite-element modeling. Journal of Biomechanics, 36(12), 1797–1811. https://doi.org/10.1016/S0021-9290(03)00230-6.

    Article  PubMed  Google Scholar 

  13. Maas, H., Baan, G. C., Huijing, P. A., Yucesoy, C. A., Koopman, B. H. F. J. M., & Grootenboer, H. J. (2003). The relative position of EDL muscle affects the length of sarcomeres within muscle fibers: experimental results and finite-element modeling. Journal of Biomechanical Engineering, 125(5), 745–753. https://doi.org/10.1115/1.1615619.

    Article  PubMed  Google Scholar 

  14. Yucesoy, C. A., Koopman, B. H. F. J. M., Baan, G. C., Grootenboer, H. J., & Huijing, P. A. (2003). Extramuscular myofascial force transmission: Experiments and finite element modeling. Archives of Physiology and Biochemistry, 111(4), 377–388. https://doi.org/10.1080/13813450312331337630.

    Article  CAS  PubMed  Google Scholar 

  15. Boers, H. E., Haroon, M., Le Grand, F., Bakker, A. D., Klein-Nulend, J., & Jaspers, R. T. (2018). Mechanosensitivity of aged muscle stem cells. Journal of Orthopaedic Research, 36(2), 632–641. https://doi.org/10.1002/jor.23797.

    Article  PubMed  Google Scholar 

  16. Haroon, M., Klein-Nulend, J., Bakker, A. D., Jin, J., Offringa, C., Le Grand, F., … Jaspers, R. T. (2021). Myofiber stretch induces tensile and shear deformation of muscle stem cells in their native niche. Biophysical Journal, 120(13), 2665–2678. https://doi.org/10.1016/j.bpj.2021.05.021.

  17. D’Andrea, P., Civita, D., Cok, M., Ulloa Severino, L., Vita, F., Scaini, D., & Bandiera, A. (2017). Myoblast adhesion, proliferation and differentiation on human elastin-like polypeptide (HELP) hydrogels. Journal of Applied Biomaterials and Functional Materials, 15(1), 43–53. https://doi.org/10.5301/jabfm.5000331.

    Article  CAS  Google Scholar 

  18. Dumont, N. A., Bentzinger, C. F., Sincennes, M. C., & Rudnicki, M. A. (2015). Satellite cells and skeletal muscle regeneration. Comprehensive Physiology, 5(3), 1027–1059. https://doi.org/10.1002/cphy.c140068.

    Article  PubMed  Google Scholar 

  19. Dumont, N. A., Wang, Y. X., Von Maltzahn, J., Pasut, A., Bentzinger, C. F., Brun, C. E., & Rudnicki, M. A. (2015). Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nature Medicine, 21(12), 1455–1463. https://doi.org/10.1038/nm.3990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu, L., Ma, X., Sun, J., Tong, J., Shi, L., Sun, L., & Zhang, J. (2017). Fluid shear stress induces osteoblast differentiation and arrests the cell cycle at the G0 phase via the ERK1/2 pathway. Molecular Medicine Reports, 6(16), 8699–8708. https://doi.org/10.3892/mmr.2017.7720.

    Article  CAS  Google Scholar 

  21. Ahsan, T., & Nerem, R. M. (2010). Fluid shear stress promotes an endothelial-like phenotype during the early differentiation of embryonic stem cells. Tissue Engineering - Part A, 16(11), 3547–3553. https://doi.org/10.1089/ten.tea.2010.0014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nishii, K., Brodin, E., Renshaw, T., Weesner, R., Moran, E., Soker, S., & Sparks, J. L. (2018). Shear stress upregulates regeneration-related immediate early genes in liver progenitors in 3D ECM-like microenvironments. Journal of Cellular Physiology, 233(5), 4272–4281. https://doi.org/10.1002/jcp.26246.

    Article  CAS  PubMed  Google Scholar 

  23. Wood, L. K., Kayupov, E., Gumucio, J. P., Mendias, C. L., Claflin, D. R., & Brooks, S. V. (2014). Intrinsic stiffness of extracellular matrix increases with age in skeletal muscles of mice. Journal of Applied Physiology, 117(4), 363–369. https://doi.org/10.1152/japplphysiol.00256.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Alnaqeeb, M. A., Al Zaid, N. S., & Goldspink, G. (1984). Connective tissue changes and physical properties of developing and ageing skeletal muscle. Journal of anatomy, 139(4), 677–89. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6526719%0A or http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1164979.

  25. Grounds, M. D., Sorokin, L., & White, J. (2005). Strength at the extracellular matrix-muscle interface. Scandinavian Journal of Medicine and Science in Sports, 15(6), 381–391. https://doi.org/10.1111/j.1600-0838.2005.00467.x.

    Article  CAS  PubMed  Google Scholar 

  26. Lacraz, G., Rouleau, A. J., Couture, V., Söllrald, T., Drouin, G., Veillette, N., … Grenier, G. (2015). Increased stiffness in aged skeletal muscle impairs muscle progenitor cell proliferative activity. PLoS ONE, 10(8). https://doi.org/10.1371/journal.pone.0136217.

  27. Hynes, R. O. (2002). Integrins: Bidirectional, allosteric signaling machines. Cell, 110(6), 673–687. https://doi.org/10.1016/S0092-8674(02)00971-6.

    Article  CAS  PubMed  Google Scholar 

  28. Yeh, Y. C., Ling, J. Y., Chen, W. C., Lin, H. H., & Tang, M. J. (2017). Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: Reciprocal regulation of caveolin-1 and β1 integrin. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-14932-6.

  29. Sun, Z., Guo, S. S., & Fässler, R. (2016). Integrin-mediated mechanotransduction. Journal of Cell Biology, 215(4), 445–456. https://doi.org/10.1083/jcb.201609037.

    Article  CAS  Google Scholar 

  30. Guo, M., Pegoraro, A. F., Mao, A., Zhou, E. H., Arany, P. R., Han, Y., & Weitz, D. A. (2017). Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proceedings of the National Academy of Sciences of the United States of America, 114(41), E8618–E8627. https://doi.org/10.1073/pnas.1705179114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boontheekul, T., Hill, E. E., Kong, H. J., & Mooney, D. J. (2007). Regulating myoblast phenotype through controlled gel stiffness and degradation. Tissue Engineering, 13(7), 1431–1442. https://doi.org/10.1089/ten.2006.0356.

    Article  CAS  PubMed  Google Scholar 

  32. Yaffe, D., & Saxel, O. (1977). Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature, 270(5639), 725–727. https://doi.org/10.1038/270725a0.

    Article  CAS  PubMed  Google Scholar 

  33. Colin-York, H., Eggeling, C., & Fritzsche, M. (2017). Dissection of mechanical force in living cells by super-resolved traction force microscopy. Nature Protocols, 12(4), 783–796. https://doi.org/10.1038/nprot.2017.009.

    Article  CAS  PubMed  Google Scholar 

  34. Tse, J. R., & Engler, A. J. (2010). Preparation of hydrogel substrates with tunable mechanical properties. Current Protocols in Cell Biology. https://doi.org/10.1002/0471143030.cb1016s47.

  35. Bacabac, R. G., Smith, T. H., Heethaar, R. M., Van Loon, J. J. W. A., Pourquie, M. J. M. B., Nieuwstadt, F. T. M., & Klein-Nulend, J. (2002). Characteristics of the parallel-plate flow chamber for mechanical stimulation of bone cells under microgravity. In European Space Agency, (Special Publication) ESA SP (pp. 83–84).

  36. Razavi, M. A., Wong, J., Akkera, M., Shalaby, M., Shalaby, H., Sholl, A., & Lee, G. S. (2020). Nuclear morphometry in indeterminate thyroid nodules. Gland Surgery, 9(2), 238–244. https://doi.org/10.21037/gs.2020.02.02.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shiihara, H., Terasaki, H., Sonoda, S., Kakiuchi, N., Yamaji, H., Yamaoka, S., … Sakamoto, T. (2020). Association of foveal avascular zone with the metamorphopsia in epiretinal membrane. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-74190-x.

  38. Panda, A. C., Abdelmohsen, K., Yoon, J.-H., Martindale, J. L., Yang, X., Curtis, J., & Gorospe, M. (2014). RNA-binding protein AUF1 promotes myogenesis by regulating MEF2C expression levels. Molecular and Cellular Biology, 34(16), 3106–3119. https://doi.org/10.1128/mcb.00423-14.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kassar-Duchossoy, L., Gayraud-Morel, B., Gomès, D., Rocancourt, D., Buckingham, M., Shinin, V., & Tajbakhsh, S. (2004). Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature, 431(7007), 466–471. https://doi.org/10.1038/nature02876.

    Article  CAS  PubMed  Google Scholar 

  40. Gissel, H. (2006). The role of Ca2+ in muscle cell damage. Annals of the New York Academy of Sciences. https://doi.org/10.1196/annals.1363.013.

    Article  Google Scholar 

  41. Glogauer, M., Arora, P., Yao, G., Sokholov, I., Ferrier, J., & McCulloch, C. A. G. (1997). Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. Journal of Cell Science, 110(1), 11–21. https://doi.org/10.1242/jcs.110.1.11.

    Article  CAS  PubMed  Google Scholar 

  42. Ogilvie, R. W., Armstrong, R. B., Baird, K. E., & Bottoms, C. L. (1988). Lesions in the rat soleus muscle following eccentrically biased exercise. American Journal of Anatomy, 182(4), 335–346. https://doi.org/10.1002/aja.1001820405.

    Article  CAS  Google Scholar 

  43. Fridén, J., & Lieber, R. L. (1998). Segmental muscle fiber lesions after repetitive eccentric contractions. Cell and Tissue Research, 293(1), 165–171. https://doi.org/10.1007/s004410051108.

    Article  PubMed  Google Scholar 

  44. Sciorati, C., Rigamonti, E., Manfredi, A. A., & Rovere-Querini, P. (2016). Cell death, clearance and immunity in the skeletal muscle. Cell Death and Differentiation, 23(6), 927–937. https://doi.org/10.1038/cdd.2015.171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bechshøft, C. J. L., Jensen, S. M., Schjerling, P., Andersen, J. L., Svensson, R. B., Eriksen, C. S., & Mackey, A. L. (2019). Age and prior exercise in vivo determine the subsequent in vitro molecular profile of myoblasts and nonmyogenic cells derived from human skeletal muscle. American Journal of Physiology - Cell Physiology, 316(6), C898–C912. https://doi.org/10.1152/ajpcell.00049.2019.

    Article  CAS  PubMed  Google Scholar 

  46. Yeung, T., Georges, P. C., Flanagan, L. A., Marg, B., Ortiz, M., Funaki, M., & Janmey, P. A. (2005). Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motility and the Cytoskeleton, 60(1), 24–34. https://doi.org/10.1002/cm.20041.

    Article  PubMed  Google Scholar 

  47. Shih, Y. R. V., Tseng, K. F., Lai, H. Y., Lin, C. H., & Lee, O. K. (2011). Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. Journal of Bone and Mineral Research, 26(4), 730–738. https://doi.org/10.1002/jbmr.278.

    Article  CAS  PubMed  Google Scholar 

  48. Kohn, J. C., Zhou, D. W., Bordeleau, F., Zhou, A. L., Mason, B. N., Mitchell, M. J., & Reinhart-King, C. A. (2015). Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior. Biophysical Journal, 108(3), 471–478. https://doi.org/10.1016/j.bpj.2014.12.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Serrano, A. L., Baeza-Raja, B., Perdiguero, E., Jardí, M., & Muñoz-Cánoves, P. (2008). Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metabolism, 7(1), 33–44. https://doi.org/10.1016/j.cmet.2007.11.011.

    Article  CAS  PubMed  Google Scholar 

  50. Li, L., Chambard, J. C., Karin, M., & Olson, E. N. (1992). Fos and Jun repress transcriptional activation by myogenin and MyoD: The amino terminus of Jun can mediate repression. Genes and Development, 6(4), 676–689. https://doi.org/10.1101/gad.6.4.676.

    Article  CAS  PubMed  Google Scholar 

  51. Brown, J. R., Nigh, E., Lee, R. J., Ye, H., Thompson, M. A., Saudou, F., & Greenberg, M. E. (1998). Fos family members induce cell cycle entry by activating cyclin D1. Molecular and Cellular Biology, 18(9), 5609–5619. https://doi.org/10.1128/mcb.18.9.5609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Daury, L., Busson, M., Tourkine, N., Casas, F., Cassar-Malek, I., Wrutniak-Cabello, C., & Cabello, G. (2001). Opposing functions of ATF2 and Fos-like transcription factors in c-Jun-mediated myogenin expression and terminal differentiation of avian myoblasts. Oncogene, 20(55), 7998–8008. https://doi.org/10.1038/sj.onc.1204967.

    Article  CAS  PubMed  Google Scholar 

  53. Guigó, R., Dermitzakis, E. T., Agarwal, P., Ponting, C. P., Parra, G., Reymond, A., … Brent, M. R. (2003). Comparison of mouse and human genomes followed by experimental verification yields an estimated 1,019 additional genes. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 1140–1145. https://doi.org/10.1073/pnas.0337561100.

  54. Chargé, S. B. P., & Rudnicki, M. A. (2004). Cellular and molecular regulation of muscle regeneration. Physiological Reviews, 84(1), 209–238. https://doi.org/10.1152/physrev.00019.2003.

    Article  PubMed  Google Scholar 

  55. Yin, H., Price, F., & Rudnicki, M. A. (2013). Satellite cells and the muscle stem cell niche. Physiological Reviews, 93(1), 23–67. https://doi.org/10.1152/physrev.00043.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Carla Offringa, Guus Baan and Gerard de Wit from the Laboratory for Myology of the Vrije Universiteit Amsterdam for technical support with experiments. We thank Mohammad Haroon for his technical support on PFF experiments.

Author contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Victor van Santen. The first draft of the manuscript was written by Victor van Santen and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Jaspers.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Santen, V.J.B., Klein-Nulend, J., Bakker, A.D. et al. Stiff matrices enhance myoblast proliferation, reduce differentiation, and alter the response to fluid shear stress in vitro. Cell Biochem Biophys 80, 161–170 (2022). https://doi.org/10.1007/s12013-021-01050-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01050-4

Keywords

Navigation