Skip to main content
Log in

Fluid Flow Mechanotransduction in Vascular Smooth Muscle Cells and Fibroblasts

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Understanding how vascular wall endothelial cells (ECs), smooth muscle cells (SMCs), and fibroblasts (FBs) sense and transduce the stimuli of hemodynamic forces (shear stress, cyclic strain, and hydrostatic pressure) into intracellular biochemical signals is critical to prevent vascular disease development and progression. ECs lining the vessel lumen directly sense alterations in blood flow shear stress and then communicate with medial SMCs and adventitial FBs to regulate vessel function and disease. Shear stress mechanotransduction in ECs has been extensively studied and reviewed. In the case of endothelial damage, blood flow shear stress may directly act on the superficial layer of SMCs and transmural interstitial flow may be elevated on medial SMCs and adventitial FBs. Therefore, it is also important to investigate direct shear effects on vascular SMCs as well as FBs. The work published in the last two decades has shown that shear stress and interstitial flow have significant influences on vascular SMCs and FBs. This review summarizes work that considered direct shear effects on SMCs and FBs and provides the first comprehensive overview of the underlying mechanisms that modulate SMC secretion, alignment, contraction, proliferation, apoptosis, differentiation, and migration in response to 2-dimensional (2D) laminar, pulsatile, and oscillating flow shear stresses and 3D interstitial flow. A mechanistic model of flow sensing by SMCs is also provided to elucidate possible mechanotransduction pathways through surface glycocalyx, integrins, membrane receptors, ion channels, and primary cilia. Understanding flow-mediated mechanotransduction in SMCs and FBs and the interplay with ECs should be helpful in exploring strategies to prevent flow-initiated atherosclerosis and neointima formation and has implications in vascular tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ainslie, K. M., J. S. Garanich, R. O. Dull, and J. M. Tarbell. Vascular smooth muscle cell glycocalyx influences shear stress-mediated contractile response. J. Appl. Physiol. 98:242–249, 2005.

    PubMed  CAS  Google Scholar 

  2. Ainslie, K., Z. D. Shi, J. S. Garanich, and J. M. Tarbell. Rat aortic smooth muscle cells contract in response to serum and its components in a calcium independent manner. Ann. Biomed. Eng. 32:1667–1675, 2004.

    PubMed  Google Scholar 

  3. Alshihabi, S. N., Y. S. Chang, J. A. Frangos, and J. M. Tarbell. Shear stress-induced release of pge2 and pgi2 by vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 224:808–814, 1996.

    PubMed  CAS  Google Scholar 

  4. Apenberg, S., M. A. Freyberg, and P. Friedl. Shear stress induces apoptosis in vascular smooth muscle cells via an autocrine fas/fasl pathway. Biochem. Biophys. Res. Commun. 310:355–359, 2003.

    PubMed  CAS  Google Scholar 

  5. Asada, H., J. Paszkowiak, D. Teso, K. Alvi, A. Thorisson, J. C. Frattini, F. A. Kudo, B. E. Sumpio, and A. Dardik. Sustained orbital shear stress stimulates smooth muscle cell proliferation via the extracellular signal-regulated protein kinase 1/2 pathway. J. Vasc. Surg. 42:772–780, 2005.

    PubMed  Google Scholar 

  6. Baldwin, A. L., L. M. Wilson, I. Gradus-Pizlo, R. Wilensky, and K. March. Effect of atherosclerosis on transmural convection an arterial ultrastructure. Implications for local intravascular drug delivery. Arterioscler. Thromb. Vasc. Biol. 17:3365–3375, 1997.

    PubMed  CAS  Google Scholar 

  7. Bodin, P., D. Bailey, and G. Burnstock. Increased flow-induced atp release from isolated vascular endothelial cells but not smooth muscle cells. Br. J. Pharmacol. 103:1203–1205, 1991.

    PubMed  CAS  Google Scholar 

  8. Chiu, J. J., S. Usami, and S. Chien. Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis. Ann. Med. 41:19–28, 2009.

    PubMed  CAS  Google Scholar 

  9. Civelek, M., K. Ainslie, J. S. Garanich, and J. M. Tarbell. Smooth muscle cells contract in response to fluid flow via a Ca2+-independent signaling mechanism. J. Appl. Physiol. 93:1907–1917, 2002.

    PubMed  CAS  Google Scholar 

  10. Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell–matrix adhesions to the third dimension. Science 294:1708–1712, 2001.

    PubMed  CAS  Google Scholar 

  11. Dan, L., C. K. Chua, and K. F. Leong. Fibroblast response to interstitial flow: a state-of-the-art review. Biotechnol. Bioeng. 107:1–10, 2010.

    PubMed  CAS  Google Scholar 

  12. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.

    PubMed  CAS  Google Scholar 

  13. Dong, J. D., Y. Q. Gu, C. M. Li, C. R. Wang, Z. G. Feng, R. X. Qiu, B. Chen, J. X. Li, S. W. Zhang, Z. G. Wang, and J. Zhang. Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts. Acta Pharmacol. Sin. 30:530–536, 2009.

    PubMed  CAS  Google Scholar 

  14. Dzau, V. J., R. C. Braun-Dullaeus, and D. G. Sedding. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat. Med. 8:1249–1256, 2002.

    PubMed  CAS  Google Scholar 

  15. Ekstrand, J., A. Razuvaev, L. Folkersen, J. Roy, and U. Hedin. Tissue factor pathway inhibitor-2 is induced by fluid shear stress in vascular smooth muscle cells and affects cell proliferation and survival. J. Vasc. Surg. 52:167–175, 2010.

    PubMed  Google Scholar 

  16. Fitzgerald, T. N., B. R. Shepherd, H. Asada, D. Teso, A. Muto, T. Fancher, J. M. Pimiento, S. P. Maloney, and A. Dardik. Laminar shear stress stimulates vascular smooth muscle cell apoptosis via the akt pathway. J. Cell. Physiol. 216:389–395, 2008.

    PubMed  CAS  Google Scholar 

  17. Fleury, M. E., K. C. Boardman, and M. A. Swartz. Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys. J. 91:113–121, 2006.

    PubMed  CAS  Google Scholar 

  18. Garanich, J. S., R. A. Mathura, Z. D. Shi, and J. M. Tarbell. Effects of fluid shear stress on adventitial fibroblast migration: implications for flow-mediated mechanisms of arterialization and intimal hyperplasia. Am. J. Physiol. Heart Circ. Physiol. 292:H3128–H3135, 2007.

    PubMed  CAS  Google Scholar 

  19. Garanich, J. S., M. Pahakis, and J. M. Tarbell. Shear stress inhibits smooth muscle cell migration via nitric oxide-mediated downregulation of matrix metalloproteinase-2 activity. Am. J. Physiol. Heart Circ. Physiol. 288:H2244–H2252, 2005.

    PubMed  CAS  Google Scholar 

  20. Gerthoffer, W. T. Mechanisms of vascular smooth muscle cell migration. Circ. Res. 100:607–621, 2007.

    PubMed  CAS  Google Scholar 

  21. Goldman, J., L. Zhong, and S. Q. Liu. Negative regulation of vascular smooth muscle cell migration by blood shear stress. Am. J. Physiol. Heart Circ. Physiol. 292:H928–H938, 2007.

    PubMed  CAS  Google Scholar 

  22. Gosgnach, W., M. Challah, F. Coulet, J. B. Michel, and T. Battle. Shear stress induces angiotensin converting enzyme expression in cultured smooth muscle cells: possible involvement of bfgf. Cardiovasc. Res. 45:486–492, 2000.

    PubMed  CAS  Google Scholar 

  23. Gosgnach, W., D. Messika-Zeitoun, W. Gonzalez, M. Philipe, and J. B. Michel. Shear stress induces inos expression in cultured smooth muscle cells: role of oxidative stress. Am. J. Physiol. Cell Physiol. 279:C1880–C1888, 2000.

    PubMed  CAS  Google Scholar 

  24. Gurney, A. M. Going with the flow: smooth muscle trpm7 channels and the vascular response to blood flow. Circ. Res. 98:163–164, 2006.

    PubMed  CAS  Google Scholar 

  25. Haga, J. H., Y. S. Li, and S. Chien. Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. J. Biomech. 40:947–960, 2007.

    PubMed  Google Scholar 

  26. Haga, M., A. Yamashita, J. Paszkowiak, B. E. Sumpio, and A. Dardik. Oscillatory shear stress increases smooth muscle cell proliferation and akt phosphorylation. J. Vasc. Surg. 37:1277–1284, 2003.

    PubMed  Google Scholar 

  27. Hahn, C., and M. A. Schwartz. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10:53–62, 2009.

    PubMed  CAS  Google Scholar 

  28. Hastings, N. E., M. B. Simmers, O. G. McDonald, B. R. Wamhoff, and B. R. Blackman. Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming. Am. J. Physiol. Cell Physiol. 293:C1824–C1833, 2007.

    PubMed  CAS  Google Scholar 

  29. Hendrickson, R. J., S. S. Okada, P. A. Cahill, E. Yankah, J. V. Sitzmann, and E. M. Redmond. Ethanol inhibits basal and flow-induced vascular smooth muscle cell migration in vitro. J. Surg. Res. 84:64–70, 1999.

    PubMed  CAS  Google Scholar 

  30. Hernandez Vera, R., E. Genove, L. Alvarez, S. Borros, R. Kamm, D. Lauffenburger, and C. E. Semino. Interstitial fluid flow intensity modulates endothelial sprouting in restricted src-activated cell clusters during capillary morphogenesis. Tissue Eng. A 15:175–185, 2009.

    CAS  Google Scholar 

  31. Hill, M. A., H. Zou, M. J. Davis, S. J. Potocnik, and S. Price. Transient increases in diameter and [Ca(2+)](i) are not obligatory for myogenic constriction. Am. J. Physiol. Heart Circ. Physiol. 278:H345–H352, 2000.

    PubMed  CAS  Google Scholar 

  32. Hosseinkhani, H., Y. Inatsugu, Y. Hiraoka, S. Inoue, and Y. Tabata. Perfusion culture enhances osteogenic differentiation of rat mesenchymal stem cells in collagen sponge reinforced with poly(glycolic acid) fiber. Tissue Eng. 11:1476–1488, 2005.

    PubMed  CAS  Google Scholar 

  33. Jeong, S. I., J. H. Kwon, J. I. Lim, S. W. Cho, Y. Jung, W. J. Sung, S. H. Kim, Y. H. Kim, Y. M. Lee, B. S. Kim, C. Y. Choi, and S. J. Kim. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic plcl scaffolds. Biomaterials 26:1405–1411, 2005.

    PubMed  CAS  Google Scholar 

  34. Kang, H., Y. Fan, and X. Deng. Vascular smooth muscle cell glycocalyx modulates shear-induced proliferation, migration, and no production responses. Am. J. Physiol. Heart Circ. Physiol. 300:H76–H83, 2011.

    PubMed  CAS  Google Scholar 

  35. Kim, M. H., N. R. Harris, D. H. Korzick, and J. M. Tarbell. Control of the arteriolar myogenic response by transvascular fluid filtration. Microvasc. Res. 68:30–37, 2004.

    PubMed  Google Scholar 

  36. Kobayashi, N., T. Yasu, H. Ueba, M. Sata, S. Hashimoto, M. Kuroki, M. Saito, and M. Kawakami. Mechanical stress promotes the expression of smooth muscle-like properties in marrow stromal cells. Exp. Hematol. 32:1238–1245, 2004.

    PubMed  CAS  Google Scholar 

  37. Kohler, T. R., and A. Jawien. Flow affects development of intimal hyperplasia after arterial injury in rats. Arterioscler. Thromb. 12:963–971, 1992.

    PubMed  CAS  Google Scholar 

  38. Lee, A. A., D. A. Graham, S. Dela Cruz, A. Ratcliffe, and W. J. Karlon. Fluid shear stress-induced alignment of cultured vascular smooth muscle cells. J. Biomech. Eng. 124:37–43, 2002.

    PubMed  Google Scholar 

  39. Lehoux, S., Y. Castier, and A. Tedgui. Molecular mechanisms of the vascular responses to haemodynamic forces. J. Intern. Med. 259:381–392, 2006.

    PubMed  CAS  Google Scholar 

  40. Levesque, M. J., and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107:341–347, 1985.

    PubMed  CAS  Google Scholar 

  41. Levick, J. R. Flow through interstitium and other fibrous matrices. Q. J. Exp. Physiol. 72:409–437, 1987.

    PubMed  CAS  Google Scholar 

  42. Li, G., S. J. Chen, S. Oparil, Y. F. Chen, and J. A. Thompson. Direct in vivo evidence demonstrating neointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries. Circulation 101:1362–1365, 2000.

    PubMed  CAS  Google Scholar 

  43. Li, S., J. L. Guan, and S. Chien. Biochemistry and biomechanics of cell motility. Annu. Rev. Biomed. Eng. 7:105–150, 2005.

    PubMed  CAS  Google Scholar 

  44. Li, Y. S., J. H. Haga, and S. Chien. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38:1949–1971, 2005.

    PubMed  Google Scholar 

  45. Li, S., J. Lao, B. P. Chen, Y. S. Li, Y. Zhao, J. Chu, K. D. Chen, T. C. Tsou, K. Peck, and S. Chien. Genomic analysis of smooth muscle cells in 3-dimensional collagen matrix. FASEB J. 17:97–99, 2003.

    PubMed  CAS  Google Scholar 

  46. Li, C., and Q. Xu. Mechanical stress-initiated signal transduction in vascular smooth muscle cells in vitro and in vivo. Cell Signal. 19:881–891, 2007.

    PubMed  CAS  Google Scholar 

  47. Liu, S. Q., D. Tang, C. Tieche, and P. K. Alkema. Pattern formation of vascular smooth muscle cells subject to nonuniform fluid shear stress: mediation by gradient of cell density. Am. J. Physiol. Heart Circ. Physiol. 285:H1072–H1080, 2003.

    PubMed  CAS  Google Scholar 

  48. Liu, S. Q., C. Tieche, D. Tang, and P. Alkema. Pattern formation of vascular smooth muscle cells subject to nonuniform fluid shear stress: role of pdgf-beta receptor and src. Am. J. Physiol. Heart Circ. Physiol. 285:H1081–H1090, 2003.

    PubMed  CAS  Google Scholar 

  49. Louis, H., P. Lacolley, A. Kakou, V. Cattan, D. Daret, M. Safar, J. Bonnet, and J. M. Daniel Lamaziere. Early activation of internal medial smooth muscle cells in the rabbit aorta after mechanical injury: relationship with intimal thickening and pharmacological applications. Clin. Exp. Pharmacol. Physiol. 33:131–138, 2006.

    PubMed  CAS  Google Scholar 

  50. Lu, C. J., H. Du, J. Wu, D. A. Jansen, K. L. Jordan, N. Xu, G. C. Sieck, and Q. Qian. Non-random distribution and sensory functions of primary cilia in vascular smooth muscle cells. Kidney Blood Press. Res. 31:171–184, 2008.

    PubMed  CAS  Google Scholar 

  51. MacLeod, D. C., B. H. Strauss, M. de Jong, J. Escaned, V. A. Umans, R. J. van Suylen, A. Verkerk, P. J. de Feyter, and P. W. Serruys. Proliferation and extracellular matrix synthesis of smooth muscle cells cultured from human coronary atherosclerotic and restenotic lesions. J. Am. Coll. Cardiol. 23:59–65, 1994.

    PubMed  CAS  Google Scholar 

  52. Michel, J. B., O. Thaunat, X. Houard, O. Meilhac, G. Caligiuri, and A. Nicoletti. Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler. Thromb. Vasc. Biol. 27:1259–1268, 2007.

    PubMed  CAS  Google Scholar 

  53. Newby, A. C. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol. Rev. 85:1–31, 2005.

    PubMed  CAS  Google Scholar 

  54. Ng, C. P., B. Hinz, and M. A. Swartz. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell Sci. 118:4731–4739, 2005.

    PubMed  CAS  Google Scholar 

  55. Ng, C. P., and M. A. Swartz. Fibroblast alignment under interstitial fluid flow using a novel 3-d tissue culture model. Am. J. Physiol. Heart Circ. Physiol. 284:H1771–H1777, 2003.

    PubMed  CAS  Google Scholar 

  56. Ni, J., A. Waldman, and L. M. Khachigian. C-jun regulates shear- and injury-inducible egr-1 expression, vein graft stenosis after autologous end-to-side transplantation in rabbits, and intimal hyperplasia in human saphenous veins. J. Biol. Chem. 285:4038–4048, 2010.

    PubMed  CAS  Google Scholar 

  57. Oancea, E., J. T. Wolfe, and D. E. Clapham. Functional trpm7 channels accumulate at the plasma membrane in response to fluid flow. Circ. Res. 98:245–253, 2006.

    PubMed  CAS  Google Scholar 

  58. Ono, O., J. Ando, A. Kamiya, Y. Kuboki, and H. Yasuda. Flow effects on cultured vascular endothelial and smooth muscle cell functions. Cell Struct. Funct. 16:365–374, 1991.

    PubMed  CAS  Google Scholar 

  59. Opitz, F., K. Schenke-Layland, T. U. Cohnert, and U. A. Stock. Phenotypical plasticity of vascular smooth muscle cells-effect of in vitro and in vivo shear stress for tissue engineering of blood vessels. Tissue Eng. 13:2505–2514, 2007.

    PubMed  CAS  Google Scholar 

  60. Opitz, F., K. Schenke-Layland, W. Richter, D. P. Martin, I. Degenkolbe, T. Wahlers, and U. A. Stock. Tissue engineering of ovine aortic blood vessel substitutes using applied shear stress and enzymatically derived vascular smooth muscle cells. Ann. Biomed. Eng. 32:212–222, 2004.

    PubMed  CAS  Google Scholar 

  61. Osanai, T., N. Akutsu, N. Fujita, T. Nakano, K. Takahashi, W. Guan, and K. Okumura. Cross talk between prostacyclin and nitric oxide under shear in smooth muscle cell: role in monocyte adhesion. Am. J. Physiol. Heart Circ. Physiol. 281:H177–H182, 2001.

    PubMed  CAS  Google Scholar 

  62. Owens, G. K. Regulation of differentiation of vascular smooth muscle cells. Physiol. Rev. 75:487–517, 1995.

    PubMed  CAS  Google Scholar 

  63. Owens, G. K., M. S. Kumar, and B. R. Wamhoff. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84:767–801, 2004.

    PubMed  CAS  Google Scholar 

  64. Palumbo, R., C. Gaetano, G. Melillo, E. Toschi, A. Remuzzi, and M. C. Capogrossi. Shear stress downregulation of platelet-derived growth factor receptor-beta and matrix metalloprotease-2 is associated with inhibition of smooth muscle cell invasion and migration. Circulation 102:225–230, 2000.

    PubMed  CAS  Google Scholar 

  65. Papadaki, M., L. V. McIntire, and S. G. Eskin. Effects of shear stress on the growth kinetics of human aortic smooth muscle cells in vitro. Biotechnol. Bioeng. 50:555–561, 1996.

    PubMed  CAS  Google Scholar 

  66. Papadaki, M., J. Ruef, K. T. Nguyen, F. Li, C. Patterson, S. G. Eskin, L. V. McIntire, and M. S. Runge. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells. Circ. Res. 83:1027–1034, 1998.

    PubMed  CAS  Google Scholar 

  67. Papadaki, M., R. G. Tilton, S. G. Eskin, and L. V. McIntire. Nitric oxide production by cultured human aortic smooth muscle cells: stimulation by fluid flow. Am. J. Physiol. 274:H616–H626, 1998.

    PubMed  CAS  Google Scholar 

  68. Pedersen, J. A., F. Boschetti, and M. A. Swartz. Effects of extracellular fiber architecture on cell membrane shear stress in a 3d fibrous matrix. J. Biomech. 40:1484–1492, 2007.

    PubMed  Google Scholar 

  69. Prockop, D. J., and K. I. Kivirikko. Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 64:403–434, 1995.

    PubMed  CAS  Google Scholar 

  70. Ramanujan, S., A. Pluen, T. D. McKee, E. B. Brown, Y. Boucher, and R. K. Jain. Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys. J. 83:1650–1660, 2002.

    PubMed  CAS  Google Scholar 

  71. Redmond, E. M., J. P. Cullen, P. A. Cahill, J. V. Sitzmann, S. Stefansson, D. A. Lawrence, and S. S. Okada. Endothelial cells inhibit flow-induced smooth muscle cell migration: role of plasminogen activator inhibitor-1. Circulation 103:597–603, 2001.

    PubMed  CAS  Google Scholar 

  72. Rensen, S. S., P. A. Doevendans, and G. J. van Eys. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth. Heart J. 15:100–108, 2007.

    PubMed  CAS  Google Scholar 

  73. Rhoads, D. N., S. G. Eskin, and L. V. McIntire. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 20:416–421, 2000.

    PubMed  CAS  Google Scholar 

  74. Rice, K. M., S. K. Kakarla, S. P. Mupparaju, S. Paturi, A. Katta, M. Wu, R. T. Harris, and E. R. Blough. Shear stress activates akt during vascular smooth muscle cell reorientation. Biotechnol. Appl. Biochem. 55:85–90, 2010.

    PubMed  CAS  Google Scholar 

  75. Riha, G. M., P. H. Lin, A. B. Lumsden, Q. Yao, and C. Chen. Roles of hemodynamic forces in vascular cell differentiation. Ann. Biomed. Eng. 33:772–779, 2005.

    PubMed  Google Scholar 

  76. Ritman, E. L., and A. Lerman. The dynamic vasa vasorum. Cardiovasc. Res. 75:649–658, 2007.

    PubMed  CAS  Google Scholar 

  77. Rizzo, V. Enhanced interstitial flow as a contributing factor in neointima formation: (shear) stressing vascular wall cell types other than the endothelium. Am. J. Physiol. Heart Circ. Physiol. 297:H1196–H1197, 2009.

    PubMed  CAS  Google Scholar 

  78. Rosati, C., and R. Garay. Flow-dependent stimulation of sodium and cholesterol uptake and cell growth in cultured vascular smooth muscle. J. Hypertens. 9:1029–1033, 1991.

    PubMed  CAS  Google Scholar 

  79. Rzucidlo, E. M., K. A. Martin, and R. J. Powell. Regulation of vascular smooth muscle cell differentiation. J. Vasc. Surg. 45(Suppl A):A25–A32, 2007.

    PubMed  Google Scholar 

  80. Sartore, S., A. Chiavegato, E. Faggin, R. Franch, M. Puato, S. Ausoni, and P. Pauletto. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ. Res. 89:1111–1121, 2001.

    PubMed  CAS  Google Scholar 

  81. Schwartz, R. S., W. D. Edwards, K. C. Huber, L. C. Antoniades, K. R. Bailey, A. R. Camrud, M. A. Jorgenson, and D. R. Holmes, Jr. Coronary restenosis: prospects for solution and new perspectives from a porcine model. Mayo Clin. Proc. 68:54–62, 1993.

    PubMed  CAS  Google Scholar 

  82. Sharma, R., C. E. Yellowley, M. Civelek, K. Ainslie, L. Hodgson, J. M. Tarbell, and H. J. Donahue. Intracellular calcium changes in rat aortic smooth muscle cells in response to fluid flow. Ann. Biomed. Eng. 30:371–378, 2002.

    PubMed  Google Scholar 

  83. Shi, Z. D., G. Abraham, and J. M. Tarbell. Shear stress modulation of smooth muscle cell marker genes in 2-d and 3-d depends on mechanotransduction by heparan sulfate proteoglycans and erk1/2. PLoS One 5:e12196, 2010.

    PubMed  Google Scholar 

  84. Shi, Z. D., X. Y. Ji, D. E. Berardi, H. Qazi, and J. M. Tarbell. Interstitial flow induces mmp-1 expression and vascular smc migration in collagen i gels via an erk1/2-dependent and c-jun-mediated mechanism. Am. J. Physiol. Heart Circ. Physiol. 298:H127–H135, 2010.

    PubMed  CAS  Google Scholar 

  85. Shi, Z. D., X. Y. Ji, H. Qazi, and J. M. Tarbell. Interstitial flow promotes vascular fibroblast, myofibroblast, and smooth muscle cell motility in 3-d collagen i via upregulation of mmp-1. Am. J. Physiol. Heart Circ. Physiol. 297:H1225–H1234, 2009.

    PubMed  CAS  Google Scholar 

  86. Shi, Y., J. E. O’Brien, A. Fard, J. D. Mannion, D. Wang, and A. Zalewski. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation 94:1655–1664, 1996.

    PubMed  CAS  Google Scholar 

  87. Shi, Z. D., H. Wang, and J. M. Tarbell. Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating mmp-13 expression and cell motility via fak-erk in 3d collagen. PLoS One 6:e15956, 2011.

    PubMed  CAS  Google Scholar 

  88. Shigematsu, K., H. Yasuhara, H. Shigematsu, and T. Muto. Direct and indirect effects of pulsatile shear stress on the smooth muscle cell. Int. Angiol. 19:39–46, 2000.

    PubMed  CAS  Google Scholar 

  89. Shimizu, N., K. Yamamoto, S. Obi, S. Kumagaya, T. Masumura, Y. Shimano, K. Naruse, J. K. Yamashita, T. Igarashi, and J. Ando. Cyclic strain induces mouse embryonic stem cell differentiation into vascular smooth muscle cells by activating pdgf receptor beta. J. Appl. Physiol. 104:766–772, 2008.

    PubMed  CAS  Google Scholar 

  90. Shou, Y., K. M. Jan, and D. S. Rumschitzki. Transport in rat vessel walls. I. Hydraulic conductivities of the aorta, pulmonary artery, and inferior vena cava with intact and denuded endothelia. Am. J. Physiol. Heart Circ. Physiol. 291:H2758–H2771, 2006.

    PubMed  CAS  Google Scholar 

  91. Stamatas, G. N., C. W. Patrick, Jr., and L. V. McIntire. Intracellular ph changes in human aortic smooth muscle cells in response to fluid shear stress. Tissue Eng. 3:391–403, 1997.

    PubMed  CAS  Google Scholar 

  92. Stegemann, J. P., H. Hong, and R. M. Nerem. Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype. J. Appl. Physiol. 98:2321–2327, 2005.

    PubMed  Google Scholar 

  93. Stegemann, J. P., and R. M. Nerem. Altered response of vascular smooth muscle cells to exogenous biochemical stimulation in two- and three-dimensional culture. Exp. Cell Res. 283:146–155, 2003.

    PubMed  CAS  Google Scholar 

  94. Stenmark, K. R., N. Davie, M. Frid, E. Gerasimovskaya, and M. Das. Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda) 21:134–145, 2006.

    CAS  Google Scholar 

  95. Sterpetti, A. V., A. Cucina, L. S. D’Angelo, B. Cardillo, and A. Cavallaro. Response of arterial smooth muscle cells to laminar flow. J. Cardiovasc. Surg. (Torino) 33:619–624, 1992.

    CAS  Google Scholar 

  96. Sterpetti, A. V., A. Cucina, L. S. D’Angelo, B. Cardillo, and A. Cavallaro. Shear stress modulates the proliferation rate, protein synthesis, and mitogenic activity of arterial smooth muscle cells. Surgery 113:691–699, 1993.

    PubMed  CAS  Google Scholar 

  97. Sterpetti, A. V., A. Cucina, A. Fragale, S. Lepidi, A. Cavallaro, and L. Santoro-D’Angelo. Shear stress influences the release of platelet derived growth factor and basic fibroblast growth factor by arterial smooth muscle cells. Eur. J. Vasc. Surg. 8:138–142, 1994.

    PubMed  CAS  Google Scholar 

  98. Sterpetti, A. V., A. Cucina, L. Santoro, B. Cardillo, and A. Cavallaro. Modulation of arterial smooth muscle cell growth by haemodynamic forces. Eur. J. Vasc. Surg. 6:16–20, 1992.

    PubMed  CAS  Google Scholar 

  99. Tada, S., and J. M. Tarbell. Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 278:H1589–H1597, 2000.

    PubMed  CAS  Google Scholar 

  100. Tada, S., and J. M. Tarbell. Fenestral pore size in the internal elastic lamina affects transmural flow distribution in the artery wall. Ann. Biomed. Eng. 29:456–466, 2001.

    PubMed  CAS  Google Scholar 

  101. Tada, S., and J. M. Tarbell. Flow through internal elastic lamina affects shear stress on smooth muscle cells (3d simulations). Am. J. Physiol. Heart Circ. Physiol. 282:H576–H584, 2002.

    PubMed  CAS  Google Scholar 

  102. Tarbell, J. M. Mass transport in arteries and the localization of atherosclerosis. Annu. Rev. Biomed. Eng. 5:79–118, 2003.

    PubMed  CAS  Google Scholar 

  103. Tarbell, J. M., and M. Y. Pahakis. Mechanotransduction and the glycocalyx. J. Intern. Med. 259:339–350, 2006.

    PubMed  CAS  Google Scholar 

  104. Tedgui, A., and M. J. Lever. Filtration through damaged and undamaged rabbit thoracic aorta. Am. J. Physiol. 247:H784–H791, 1984.

    PubMed  CAS  Google Scholar 

  105. Tsai, M. C., L. Chen, J. Zhou, Z. Tang, T. F. Hsu, Y. Wang, Y. T. Shih, H. H. Peng, N. Wang, Y. Guan, S. Chien, and J. J. Chiu. Shear stress induces synthetic-to-contractile phenotypic modulation in smooth muscle cells via peroxisome proliferator-activated receptor alpha/delta activations by prostacyclin released by sheared endothelial cells. Circ. Res. 105:471–480, 2009.

    PubMed  CAS  Google Scholar 

  106. Ueba, H., M. Kawakami, and T. Yaginuma. Shear stress as an inhibitor of vascular smooth muscle cell proliferation. Role of transforming growth factor-beta 1 and tissue-type plasminogen activator. Arterioscler. Thromb. Vasc. Biol. 17:1512–1516, 1997.

    PubMed  CAS  Google Scholar 

  107. Van Gieson, E. J., W. L. Murfee, T. C. Skalak, and R. J. Price. Enhanced smooth muscle cell coverage of microvessels exposed to increased hemodynamic stresses in vivo. Circ. Res. 92:929–936, 2003.

    PubMed  Google Scholar 

  108. Wagner, C. T., W. Durante, N. Christodoulides, J. D. Hellums, and A. I. Schafer. Hemodynamic forces induce the expression of heme oxygenase in cultured vascular smooth muscle cells. J. Clin. Invest. 100:589–596, 1997.

    PubMed  CAS  Google Scholar 

  109. Wang, D. M., and J. M. Tarbell. Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells. J. Biomech. Eng. 117:358–363, 1995.

    PubMed  CAS  Google Scholar 

  110. Wang, S., and J. M. Tarbell. Effect of fluid flow on smooth muscle cells in a 3-dimensional collagen gel model. Arterioscler. Thromb. Vasc. Biol. 20:2220–2225, 2000.

    PubMed  CAS  Google Scholar 

  111. Wang, H., S. Yan, H. Chai, G. M. Riha, M. Li, Q. Yao, and C. Chen. Shear stress induces endothelial transdifferentiation from mouse smooth muscle cells. Biochem. Biophys. Res. Commun. 346:860–865, 2006.

    PubMed  CAS  Google Scholar 

  112. Weinbaum, S., J. M. Tarbell, and E. R. Damiano. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9:121–167, 2007.

    PubMed  CAS  Google Scholar 

  113. Yamamoto, K., T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando. Fluid shear stress induces differentiation of flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am. J. Physiol. Heart Circ. Physiol. 288:H1915–H1924, 2005.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Institutes of Health grants RO1 HL 094889 (to JMT).

Conflict of Interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Dong Shi.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, ZD., Tarbell, J.M. Fluid Flow Mechanotransduction in Vascular Smooth Muscle Cells and Fibroblasts. Ann Biomed Eng 39, 1608–1619 (2011). https://doi.org/10.1007/s10439-011-0309-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0309-2

Keywords

Navigation