Skip to main content
Log in

Mechanistic Insights into Interaction of Humic Acid with Silver Nanoparticles

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Humic acid (HA) is one of the major components of the natural organic matter present in the environment that alters the fate and behavior of silver nanoparticles (Ag NPs). Transformation of Ag NPs happens upon interaction with HA, thereby, changing both physical and chemical properties. Fluorescence spectroscopy and scanning electron microscopy (SEM) were used to analyze the interaction of Ag NPs with HA. In pH and time-dependent studies, the near field electro dynamical environment of Ag NPs influenced the fluorescence of HA, indicated by fluorescence enhancement. SEM revealed not only morphological changes, but also significant reduction in size of Ag NPs after interaction with HA. Based on these studies, a probable mechanism was proposed for the interaction of HA with Ag NPs, suggesting the possible transformation that these nanoparticles can undergo in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aitken, R. J., Chaudhry, M. Q., Boxall, A. B. A., & Hull, M. (2006). Manufacture and use of nanomaterials: Current status in the UK and global trends. Occupational Medicine (London), 56, 300–306.

    Article  CAS  Google Scholar 

  2. Ravindran, A., Singh, A., Raichur, A. M., Chandrasekaran, N., & Mukherjee, A. (2010). Studies on interaction of colloidal Ag nanoparticles with bovine serum albumin (BSA). Colloids Surface B Biointerfaces, 76, 32–37.

    Article  CAS  Google Scholar 

  3. Levard, C., Hotze, E. M., Lowry, G. V., & Brown, G. E, Jr. (2012). Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environmental Science and Technology, 3, 6900–6914.

    Article  Google Scholar 

  4. Deshiikan, S. R., Eschenazi, E., & Papadopoulos, K. D. (1998). Transport of colloids through porous beds in the presence of natural organic matter. Colloids Surface A: Physicochemical Engineering Aspects, 145, 93–100.

    Article  CAS  Google Scholar 

  5. Manciulea, A., Baker, A., & Lead, J. R. (2009). A fluorescence quenching study of the interaction of Suwannee River fulvic acid with iron oxide nanoparticles. Chemosphere, 76, 1023–1027.

    Article  CAS  PubMed  Google Scholar 

  6. Yang, K., Zhu, L., Lou, B., & Chen, B. (2005). Correlations of nonlinear sorption of organic solutes with soil/sediment physicochemical properties. Chemosphere, 61, 116–128.

    Article  CAS  PubMed  Google Scholar 

  7. Klaine, S. J., Alvarez, P. J., Batley, G. E., Fernandes, T. F., Handy, R. D., et al. (2008). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27, 1825–1851.

    Article  CAS  PubMed  Google Scholar 

  8. Sutton, R., & Sposito, G. (2005). Molecular structure in soil humic substances: The new view. Environmental Science and Technology, 39, 9009–9015.

    Article  CAS  PubMed  Google Scholar 

  9. Hyung, H., & Kim, J. H. (2008). Natural organic matter (NOM) adsorption onto multi-walled carbon nanotubes: Effect of NOM characteristics and water quality parameters. Environmental Science and Technology, 42, 4416–4421.

    Article  CAS  PubMed  Google Scholar 

  10. Akaighe, N., Maccuspie, R. I., Navarro, D. A., Aga, D. S., Banerjee, S., et al. (2011). Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environmental Science and Technology, 45, 3895–3901.

    Article  CAS  PubMed  Google Scholar 

  11. Pallem, V. L., Stretz, H. A., & Wells, M. J. (2009). Evaluating aggregation of gold nanoparticles and humic substances using fluorescence spectroscopy. Environmental Science and Technology, 43, 7531–7535.

    Article  CAS  PubMed  Google Scholar 

  12. Schmit, K. H., & Wells, M. J. M. (2002). Preferential adsorption of fluorescing fulvic and humic acid components on activated carbon using flow field-flow fractionation analysis. Journal of Environmental Monitoring, 4, 75–84.

    Article  CAS  PubMed  Google Scholar 

  13. Klavins, M., & Ansone, L. (2010). Study of interaction between humic acids and fullerene C60 using fluorescence quenching approach. Ecological Chemistry and Engineering S, 17, 351–362.

    CAS  Google Scholar 

  14. Kruszewski, S., Wybranowski, T., Cyrankiewicz, M., Ziomkowska, B., & Pawlaczyk, A. (2008). Enhancement of FITC fluorescence by silver colloids and silver island films. Acta Physica Polonica, 113, 1599–1608.

    CAS  Google Scholar 

  15. Wu, W., Dong, J., Wang, X., Li, J., Sui, S., et al. (2012). Fluorogenic and chromogenic probe for detection of a nerve agent simulant DCP. Analyst, 137, 3224–3226.

    Article  CAS  PubMed  Google Scholar 

  16. Tovmachenko, O. G., Graf, C., Van Den Heuvel, D. J., VanBlaaderen, A., & Gerritsen, H. C. (2006). Fluorescence enhancement by metal-core/silica-shell nanoparticles. Advanced Materials, 18, 91–95.

    Article  CAS  Google Scholar 

  17. Li, R., Wang, C., Xu, S., Wang, Z., & Shao, H. (2012). pH-Dependent metal-enhanced fluorescence from CdTe@PAA nanospheres near the Au nanoparticles in aqueous solution. Chinese Journal of Chemistry, 30, 1490–1496.

    Article  CAS  Google Scholar 

  18. dos Santos, David S., Jr, Alvarez-Puebla, Ramon A., Oliveira, Osvaldo N., Jr, & Aroca, Ricardo F. (2012). Controlling the size and shape of gold nanoparticles in fulvic acid colloidal solutions and their optical characterization using SERS. Journal of Materials Chemistry, 15, 3045–3049.

    Article  Google Scholar 

  19. Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., et al. (2008). Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science and Technology, 42, 8959–8964.

    Article  CAS  PubMed  Google Scholar 

  20. Sotiriou, G. A., Teleki, A., Camenzind, A., Krumeich, F., Meyer, A., et al. (2011). Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area. Chemical Engineering Journal, 170, 547–554.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Liu, J., Sonshine, D. A., Shervani, S., & Hurt, R. H. (2010). Controlled release of biologically active silver from nanosilver surfaces. ACS Nano, 4, 6903–6913.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ma, R., Levard, C., Marinakos, S. M., Cheng, Y., Liu, J., et al. (2012). Size-controlled dissolution of organic-coated silver nanoparticles. Environmental Science and Technology, 46, 752–759.

    Article  CAS  PubMed  Google Scholar 

  23. Asghari, S., Johari, S. A., Lee, J. H., Kim, Y. S., Jeon, Y. B., et al. (2012). Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. Journal of Nanobiotechnology, 2, 10–14.

    Google Scholar 

Download references

Acknowledgments

We thank SASTRA University for providing us the facilities for carrying out this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aswathy Ravindran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manoharan, V., Ravindran, A. & Anjali, C.H. Mechanistic Insights into Interaction of Humic Acid with Silver Nanoparticles. Cell Biochem Biophys 68, 127–131 (2014). https://doi.org/10.1007/s12013-013-9699-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9699-0

Keywords

Navigation