Skip to main content

Advertisement

Log in

Lactate dehydrogenase, Catalase, and Superoxide dismutase in Tumor Tissue of Breast Cancer Patients in Respect to Mammographic Findings

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Lactate dehydrogenase (LDH), marker of anaerobic metabolism, is associated with highly invasive and metastatic breast cancer. Novel studies show that increased anaerobic metabolism (LDH), as well as activity of antioxidative enzymes (superoxide dismutase (SOD) and catalase (CAT)), is correlated with higher mammographic density, as known predictor of breast cancer risk. In this study, we measured LDH, MDH, and SOD activity in tumor and adjacent tissues of breast cancer patients by spectrophotometric assay. Mammograms were evaluated according to the American College of Radiology Breast Imaging Reporting and Data system. Mammographically dense breast tissue is associated with higher activity of LDH in tumor tissue of breast cancer patients. Moreover, patients with masses have significantly higher activity of LDH compared to patients with focal asymmetries or architectural distortion. Patients with spiculated mass margin had higher activity of LDH compared to patients with focal asymmetries or architectural distortion. Activity of LDH in patients significantly increases, while activity of CAT significantly decreases with the increase of BIRADS category. These results suggest that the association of activity of LDH and CAT in tumor tissue with mammographic characteristics could help in defining aggressive breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LDH:

Lactate dehydrogenase

SOD:

Superoxide dismutase

CAT:

Catalase

HER2:

Human epidermal growth factor receptor 2

DAB-3:

3Diaminobenzidine

ER:

Estrogen receptor

PR:

Progesterone receptor

References

  1. Puliti, D., & Zappa, M. (2012). Breast cancer screening: are we seeing the benefit? BMC Medicne, 10, 106.

    Article  Google Scholar 

  2. Boyd, N. F., Martin, L. J., Yaffe, M. J., & Minkin, S. (2011). Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Research, 13(6), 223.

    Article  PubMed  Google Scholar 

  3. Boyd, N. F., Melnichouk, O., Martin, L. J., Hislop, G., Chiarelli, A. M., Yaffe, M. J., et al. (2011). Mammographic density, response to hormones, and breast cancer risk. Journal of Clinical Oncology, 29(22), 2985–2992.

    Article  PubMed  CAS  Google Scholar 

  4. Boyd N.F. (2011) Tamoxifen, mammographic density, and breast cancer prevention. Journal of the National Cancer Institute, 103(9), 704–5.

    Google Scholar 

  5. Boyd, N. F., Martin, L. J., Bronskill, M., Yaffe, M. J., Duric, N., & Minkin, S. (2010). Breast tissue composition and susceptibility to breast cancer. Journal of the National Cancer Institute, 102(16), 1224–1237.

    Article  PubMed  Google Scholar 

  6. Boyd, N. F., & McGuire, V. (1990). Evidence of lipid peroxidation in premenopausal women with mammographic dysplasia. Cancer Letters, 50, 31–37.

    Article  PubMed  CAS  Google Scholar 

  7. Basu, A. K., & Marnett, L. J. (1983). Unequivocal demonstration that malondialdehyde is a mutagen. Carcinogenesis, 4, 331–333.

    Article  PubMed  CAS  Google Scholar 

  8. Jaganjac, M., Cacev, T., Cipak, A., Kapitanović, S., Gall Troselj, K., & Zarković, N. (2012). Even stressed cells are individuals: second messengers of free radicals in pathophysiology of cancer. Croatian Medical Journal, 53(4), 304–309.

    Article  PubMed  CAS  Google Scholar 

  9. Fantin, V. R., St-Pierre, J., & Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9, 425–434.

    Article  PubMed  CAS  Google Scholar 

  10. Zhou, M., Zhao, Y., Ding, Y., Liu, H., Liu, Z., Fodstad, O., et al. (2010). Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Molecular Cancer, 9, 33.

    Article  PubMed  Google Scholar 

  11. Konjević, G., Spuzić, I., & Jurisić, V. (2001). Association of NK cell dysfunction with changes in LDH characteristics of peripheral blood lymphocytes (PBL) in breast cancer patients. Breast Cancer Research and Treatment, 66(3), 255–263.

    Article  PubMed  Google Scholar 

  12. De Berardinis, R. J., Lum, J. J., Hatzivassiliou, G., & Thompson, C. B. (2008). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism, 7, 11–20.

    Article  Google Scholar 

  13. Ursin, G., Hovanessian-Larsen, L., Parisky, Y. R., Pike, M. C., & Wu, A. H. (2005). Greatly increased occurrence of breast cancers in areas of mammographically dense tissue. Breast Cancer Research, 7(5), 605–608.

    Article  Google Scholar 

  14. Filipits, M., Rudas, M., Jakesz, R., Dubsky, P., Fitzal, F., Singer, C. F., et al. (2011). A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clinical Cancer Research, 17(18), 6012–6020.

    Article  PubMed  CAS  Google Scholar 

  15. Wang, Y., Ikeda, D. M., Narasimhan, B., Longacre, T. A., Bleicher, R. J., Pal, S., et al. (2008). Estrogen receptor-negative invasive breast cancer: imaging features of tumors with and without human epidermal growth factor receptor type 2 overexpression. Radiology, 246(2), 367–375.

    Article  PubMed  Google Scholar 

  16. Stankovic, S., Konjevic, G., Gopcevic, K., Jovic, V., Inic, M., & Jurisic, V. (2010). Activity of MMP-2 and MMP-9 in sera of breast cancer patients. Pathology, Research and Practice, 206(4), 241–247.

    Article  PubMed  CAS  Google Scholar 

  17. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976(72), 248–254.

    Article  Google Scholar 

  18. Van der Helm, H. J. (1962). Interference of the measurement of lactate dehydrogenase (LDH) activity in human serum and plasma by LDH from blood cells. Clinica Chimica Acta, 1962(7), 124–128.

    Article  Google Scholar 

  19. Cunningham, V. R., Phillips, J., & Field, E. J. (1965). Lactic dehydrogenase isoenzymes in normal and pathological spinal fluids. Journal of Clinical Pathology, 18(6), 765–770.

    Article  PubMed  CAS  Google Scholar 

  20. Weydert, C. J., & Cullen, J. J. (2010). Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nature Protocols, 5(1), 51–66.

    Article  PubMed  CAS  Google Scholar 

  21. Burnside, E. S., Sickles, E. A., Bassett, L. W., Rubin, D. L., Lee, C. H., Ikeda, D. M., et al. (2009). The ACR BI-RADS experience: learning from history. Journal American College Radiology, 6(12), 851–860.

    Article  Google Scholar 

  22. Boyd, N. F., Martin, L. J., Yaffe, M., & Minkin, S. (2009). Mammographic density. Breast Cancer Research, 11(3), S4.

    Article  PubMed  Google Scholar 

  23. Boyd, N. F., Rommens, J. M., Vogt, K., Lee, V., Hopper, J. L., Yaffe, M. J., et al. (2005). Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncology, 6(10), 798–808.

    Article  PubMed  Google Scholar 

  24. Fu, L., Tsuchiya, S., Matsuyama, I., & Ishii, K. (1998). Clinicopathologic features and incidence of invasive lobular carcinoma in Japanese women. Pathology International, 48, 348–354.

    Article  PubMed  CAS  Google Scholar 

  25. Seo, B. K., Pisano, E. D., Kuzimak, C. M., Koomen, M., Pavic, D., Lee, Y., et al. (2006). Correlation of HER-2/neu overexpression with mammography and age distribution in primary breast carcinomas. Academic Radiology, 13(10), 1211–1218.

    Article  PubMed  Google Scholar 

  26. Tabar, L., Tony Chen, H.H., Amy Yen, M.F., Tot, T., Tung, T.H., Chen, L.S. et al. (2004) Mammographic tumor features can predict long-term outcomes reliably in women with 1-14-mm invasive breast carcinoma. Cancer, 101(8), 1745–59.

  27. Habel, L. A., Dignam, J. J., Land, S. R., Salane, M., Capra, A. M., & Julian, T. B. (2004). Mammographic density and breast cancer after ductal carcinoma in situ. Journal of the National Cancer Institute, 96, 1467–1472.

    Article  PubMed  Google Scholar 

  28. Dang, C. V., & Semenza, G. L. (1999). Oncogenic alterations of metabolism. Trends in Biochemical Sciences, 24(2), 68–72.

    Article  PubMed  CAS  Google Scholar 

  29. Hong, C. C., Tang, B. K., Rao, V., Agarwal, S., Martin, L., Tritchler, D., et al. (2004). Cytochrome P450 1A2 (CYP1A2) activity, mammographic density, and oxidative stress: a cross-sectional study. Breast Cancer Research, 6(4), R338–R351.

    Article  PubMed  Google Scholar 

  30. Tsanou, E., Ioachim, E., Briasoulis, E., Damala, K., Charchanti, A., Karavasilis, V., et al. (2004). Immunohistochemical expression of superoxide dismutase (MnSOD) anti-oxidant enzyme in invasive breast carcinoma. Histology and Histopathology, 19(3), 807–813.

    PubMed  CAS  Google Scholar 

  31. Kattan, Z., Minig, V., Leroy, P., Dauça, M., & Becuwe, P. (2008). Role of manganese superoxide dismutase on growth and invasive properties of human estrogen-independent breast cancer cells. Breast Cancer Research and Treatment, 108(2), 203–215.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant No. 175056 of the Ministry of Science and Technology of the Republic of Serbia. We wish to thank Prof. Dr. M. Susa for suggestions and help during this investigation. Also, we wish to thank Mrs. Jasna Popovic-Basic and Mrs. Marijana Topalovic for excellent technical work during this investigation and Mrs. Dusica Gavrilovic for extensive statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandra Radenkovic or Vladimir Jurisic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radenkovic, S., Milosevic, Z., Konjevic, G. et al. Lactate dehydrogenase, Catalase, and Superoxide dismutase in Tumor Tissue of Breast Cancer Patients in Respect to Mammographic Findings. Cell Biochem Biophys 66, 287–295 (2013). https://doi.org/10.1007/s12013-012-9482-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9482-7

Keywords

Navigation