Skip to main content

Advertisement

Log in

Role of manganese superoxide dismutase on growth and invasive properties of human estrogen-independent breast cancer cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Manganese superoxide dismutase (MnSOD) is known to play a role in cancer. MnSOD exerts a tumor suppressive effect in estrogen-dependent human breast cancer cells. In the present study we investigated the in vitro role of MnSOD in the growth of some aggressive and highly metastatic estrogen-independent breast cancer cells, i.e., MDA-MB231 and SKBR3 cells. We show that estrogen-independent cells expressed a significantly higher basal MnSOD level compared to estrogen-dependent human breast cancer cell lines (MCF-7 and T47D). For MDA-MB231 cells, the high-MnSOD level was accompanied by an overproduction of intracellular hydrogen peroxide (H2O2) and by a low expression of the major H2O2-detoxifying enzymes, catalase, and peroxiredoxin 3, compared to MCF-7 cells. Suppression of MnSOD expression by antisense RNA was associated with a decrease of H2O2 content and caused a stimulation of growth with a reduced cell doubling time but induced a decrease of colony formation. Furthermore, treatment of MDA-MB231 cells with H2O2 scavengers markedly reduced tumor cell growth and colony formation. In addition, MnSOD suppression or treatment with H2O2 scavengers reduced the invasive properties of MDA-MB231 cells up to 43%, with a concomitant decrease of metalloproteinase-9 activity. We conclude that MnSOD plays a role in regulating tumor cell growth and invasive properties of estrogen-independent metastatic breast cancer cells. These action are mediated by MnSOD-dependent H2O2 production. In addition, these results suggest that MnSOD up-regulation may be one mechanism that contributes to the development of metastatic breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Matés JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104

    Article  PubMed  Google Scholar 

  2. St Clair DK, Wan XS, Oberley TD, Muse KE, St Clair WH (1992) Suppression of radiation-induced neoplastic transformation by overexpression of mitochondrial superoxide dismutase. Mol Carcinog 6:238–242

    Article  PubMed  CAS  Google Scholar 

  3. Kiningham KK, Oberley TD, Lin S, Mattingly CA, St Clair DK (1999) Overexpression of manganese superoxide dismutase protects against mitochondrial-initiated poly(ADP-ribose) polymerase-mediated cell death. FASEB J 13:1601–1610

    PubMed  CAS  Google Scholar 

  4. Lebovitz RM, Zhang H, Vogel H, Cartwright J Jr, Dionne L, Lu N, Huang S, Matzuk MM (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA 93:9782–9787

    Article  PubMed  CAS  Google Scholar 

  5. Ridnour LA, Oberley TD, Oberley LW (2004) Tumor suppressive effects of MnSOD overexpression may involve imbalance in peroxide generation versus peroxide removal. Antioxid Redox Signal 6:501–512

    Article  PubMed  CAS  Google Scholar 

  6. Bravard A, Sabatier L, Hoffschir F, Ricoul M, Luccioni C, Dutrillaux B (1992) SOD2: a new type of tumor-suppressor gene? Int J Cancer 51:476–480

    Article  PubMed  CAS  Google Scholar 

  7. Church SL, Grant JW, Ridnour LA, Oberley LW, Swanson PE, Meltzer PS, Trent JM (1993) Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci USA 90:3113–3117

    Article  PubMed  CAS  Google Scholar 

  8. Li N, Oberley TD, Oberley LW, Zhong W (1998) Overexpression of manganese superoxide dismutase in DU145 human prostate carcinoma cells has multiple effects on cell phenotype. Prostate 35:221–233

    Article  PubMed  CAS  Google Scholar 

  9. Kim KH, Rodriguez AM, Carrico PM, Melendez JA (2001) Potential mechanisms for the inhibition of tumor cell growth by manganese superoxide dismutase. Antiox Redox Signal 3:361–373

    Article  CAS  Google Scholar 

  10. Cullen JJ, Weydert C, Hinkhouse MM, Ritchie J, Domann FE, Spitz D, Oberley LW (2003) The role of manganese superoxide dismutase in the growth of pancreatic adenocarcinoma. Cancer Res 63:1297–1303

    PubMed  CAS  Google Scholar 

  11. Nishida S, Akai F, Iwasaki H, Hosokawa K, Kusunoki T, Suzuki K, Taniguchi N, Hashimoto S, Tamura TT (1993) Manganese superoxide dismutase content and localization in human thyroid tumours. J Pathol 169:341–345

    Article  PubMed  CAS  Google Scholar 

  12. Cobbs CS, Levi DS, Aldape K, Israel MA (1996) Manganese superoxide dismutase expression in human central nervous system tumors. Cancer Res 56:3192–3195

    PubMed  CAS  Google Scholar 

  13. Janssen AM, Bosman CB, van Duijn W, Oostendorp-van de Ruit MM, Kubben FJ, Griffioen G, Lamers CB, van Krieken JH, van de Velde CJ, Verspaget HW (2000) Superoxide dismutases in gastric and esophageal cancer and the prognostic impact in gastric cancer. Clin Cancer Res 6:3183–3192

    PubMed  CAS  Google Scholar 

  14. Nishiura T, Suzuki K, Kawaguchi T, Nakao H, Kawamura N, Taniguchi M, Kanayama Y, Yonezawa T, Iizuka S, Taniguchi N (1992) Elevated serum manganese superoxide dismutase in acute leukemias. Cancer Lett 62:211–215

    Article  PubMed  CAS  Google Scholar 

  15. Malafa M, Margenthaler J, Webb B, Neitzel L, Christophersen M (2000) MnSOD expression is increased in metastatic gastric cancer. J Surg Res 88:130–134

    Article  PubMed  CAS  Google Scholar 

  16. Toh Y, Kuninaka S, Oshiro T, Ikeda Y, Nakashima H, Baba H, Kohnoe S, Okamura T, Mori M, Sugimachi K (2000) Overexpression of manganese superoxide dismutase mRNA may correlate with aggressiveness in gastric and colorectal adenocarcinomas. Int J Oncol 17:107–112

    PubMed  CAS  Google Scholar 

  17. Li JJ, Oberley LW, St Clair DK, Ridnour LA, Oberley TD (1995) Phenotypic changes induced in human breast cancer cells by overexpression of manganese-containing superoxide dismutase. Oncogene 10:1989–2000

    PubMed  CAS  Google Scholar 

  18. Oberley LW (2005) Mechanism of the tumor suppressive effect of MnSOD overexpression. Biomed Pharmacother 59:143–148

    Article  PubMed  CAS  Google Scholar 

  19. Tsanou E, Ioachim E, Briasoulis E, Damala K, Charchanti A, Karavasilis V, Pavlidis N, Agnantis NJ (2004) Immunohistochemical expression of superoxide dismutase (MnSOD) anti-oxidant enzyme in invasive breast carcinoma. Histol Histopathol 19:807–813

    PubMed  CAS  Google Scholar 

  20. De Bortoli M, Dati C, Antoniotti S, Maggiora P, Sapei ML (1992) Hormonal regulation of c-erbB-2 oncogene expression in breast cancer cells. J Steroid Biochem Mol Biol 43:21–25

    Article  PubMed  Google Scholar 

  21. Bianchi A, Becuwe P, Franck P, Dauca M (2002) Induction of MnSOD gene by arachidonic acid is mediated by reactive oxygen species and p38 MAPK signaling pathway in human HepG2 hepatoma cells. Free Radic Biol Med 32:1132–1142

    Article  PubMed  CAS  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  23. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  24. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  25. El Bouhtoury F, Keller JM, Colin S, Parache RM, Dauça M (1992) Peroxisomal enzymes in normal and tumoral human breast. J Pathol 166:27–35

    Article  PubMed  CAS  Google Scholar 

  26. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  27. Fossati P, Prencipe L, Berti G (1980) Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem 26:227–231

    PubMed  CAS  Google Scholar 

  28. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    PubMed  CAS  Google Scholar 

  29. Leroy P, Nicolas A, Thioudellet C, Oster T, Wellman M, Siest G (1993) Rapid liquid chromatographic assay of glutathione in cultured cells. Biomed Chromatogr 7:86–89

    Article  PubMed  CAS  Google Scholar 

  30. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  31. Talhouk RS, Chin JR, Unemori EN, Werb Z, Bissell MJ (1991) Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture. Development 112:439–449

    PubMed  CAS  Google Scholar 

  32. Merril CR, Goldman D, Sedman SA, Ebert MH (1981) Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 211:1437–1438

    Article  PubMed  CAS  Google Scholar 

  33. Xu Y, Krishnan A, Wan XS, Majima H, Yeh CC, Ludewig G, Kasarskis EJ, St Clair DK (1999) Mutations in the promoter reveal a cause for the reduced expression of the human manganese superoxide dismutase gene in cancer cells. Oncogene 18:93–102

    Article  PubMed  CAS  Google Scholar 

  34. Huang Y, He T, Domann FE (1999) Decreased expression of manganese superoxide dismutase in transformed cells is associated with increased cytosine methylation of the SOD2 gene. DNA Cell Biol 18:643–652

    Article  PubMed  CAS  Google Scholar 

  35. Millikin D, Meese E, Vogelstein B, Witkowski C, Trent J (1991) Loss of heterozygosity for loci on the long arm of chromosome 6 in human malignant melanoma. Cancer Res 51:5449–5453

    PubMed  CAS  Google Scholar 

  36. Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ Jr, Sledge GW Jr (1998) Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17:3629–3639

    Google Scholar 

  37. Bernard D, Quatannens B, Begue A, Vandenbunder B, Abbadie C (2001) Antiproliferative and antiapoptotic effects of crel may occur within the same cells via the up-regulation of manganese superoxide dismutase. Cancer Res 61:2656–2664

    PubMed  CAS  Google Scholar 

  38. Oberley TD, Zhong W, Szweda LI, Oberley LW (2000) Localization of antioxidant enzymes and oxidative damage products in normal and malignant prostate epithelium. Prostate 44:144–155

    Article  PubMed  CAS  Google Scholar 

  39. Esworthy RS, Baker MA, Chu FF (1995) Expression of selenium-dependent glutathione peroxidase in human breast tumor cell lines. Cancer Res 55:957–962

    PubMed  CAS  Google Scholar 

  40. Cerutti PA (1985) Prooxidant states and tumor promotion. Science 227:375–381

    Article  PubMed  CAS  Google Scholar 

  41. Chang TS, Cho CS, Park S, Yu S, Kang SW, Rhee SG (2004) Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J Biol Chem 279:41975–41984

    Article  PubMed  CAS  Google Scholar 

  42. Hu Y, Rosen DG, Zhou Y, Feng L, Yang G, Liu J, Huang P (2005) Mitochondrial manganese-superoxide dismutase expression in ovarian cancer: role in cell proliferation and response to oxidative stress. J Biol Chem 280:39485–39492

    Article  PubMed  CAS  Google Scholar 

  43. Yang JQ, Li S, Domann FE, Buettner GR, Oberley LW (1999) Superoxide generation in v-Ha-ras-transduced human keratinocyte HaCaT cells. Mol Carcinog 26:180–188

    Article  PubMed  CAS  Google Scholar 

  44. Grandemange S, Seyer P, Carazo A, Becuwe P, Pessemesse L, Busson M, Marsac C, Roger P, Casas F, Cabello G, Wrutniak-Cabello C (2005) Stimulation of mitochondrial activity by p43 overexpression induces human dermal fibroblast transformation. Cancer Res 65:4282–4291

    Article  PubMed  CAS  Google Scholar 

  45. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  46. Karin M, Shaulian E (2001) AP-1: linking hydrogen peroxide and oxidative stress to the control of cell proliferation and death. IUBMB Life 52:17–24

    PubMed  CAS  Google Scholar 

  47. Li N, Zhai Y, Oberley TD (1999) Two distinct mechanisms for inhibition of cell growth in human prostate carcinoma cells with antioxidant enzyme imbalance. Free Radic Biol Med 26:1554–1568

    Article  PubMed  CAS  Google Scholar 

  48. Lam EW, Zwacka R, Seftor EA, Nieva DR, Davidson BL, Engelhardt JF, Hendrix MJ, Oberley LW (1999) Effects of antioxidant enzyme overexpression on the invasive phenotype of hamster cheek pouch carcinoma cells. Free Radic Biol Med 27:572–579

    Article  PubMed  CAS  Google Scholar 

  49. Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP (1999) Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem 274:13066–13076

    Article  PubMed  CAS  Google Scholar 

  50. Zhang HJ, Zhao W, Venkataraman S, Robbins ME, Buettner GR, Kregel KC, Oberley LW (2002) Activation of matrix metalloproteinase-2 by overexpression of manganese superoxide dismutase in human breast cancer MCF-7 cells involves reactive oxygen species. J Biol Chem 277:20919–20926

    Article  PubMed  CAS  Google Scholar 

  51. Nelson KK, Ranganathan AC, Mansouri J, Rodriguez AM, Providence KM, Rutter JL, Pumiglia K, Bennett JA, Melendez JA (2003) Elevated sod2 activity augments matrix metalloproteinase expression: evidence for the involvement of endogenous hydrogen peroxide in regulating metastasis. Clin Cancer Res 9:424–432

    PubMed  CAS  Google Scholar 

  52. Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 98:2572–2579

    Article  PubMed  CAS  Google Scholar 

  53. Sato H, Seiki M (1993) Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 8:395–405

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to E. Brunner and L. Tirand for their skillful technical assistance, to Professor J. L. Merlin (Centre Alexis Vautrin, Vandoeuvre lès Nancy, France) for the gift of breast cancer cell lines, and to Dr. A. Taube for critical reading of the manuscript. This work was supported by grants from the Ligue contre le Cancer (Comité de Meuse), Association pour la Recherche sur le Cancer and the Université Henri Poincaré-Nancy I. Z. Kattan and V. Minig have a fellowship from Syrian Government and the Ligue contre le Cancer (Comité de Meurthe et Moselle), respectively. Z. Kattan and V. Minig contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Becuwe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kattan, Z., Minig, V., Leroy, P. et al. Role of manganese superoxide dismutase on growth and invasive properties of human estrogen-independent breast cancer cells. Breast Cancer Res Treat 108, 203–215 (2008). https://doi.org/10.1007/s10549-007-9597-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9597-5

Keywords

Navigation