Skip to main content
Log in

Migration of 4-Hexylresorcinol Through Escherichia coli Cell Membranes

  • CHEMICAL PHYSICS OF BIOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

This study demonstrates the effect of phenolic lipid 4-hexylresorcinol (4HR) on gram-negative Escherichia coli K12 bacteria, leading to cytodifferentiation and affecting cell morphology and viability. It is shown that the effect of 4HR on cells is dose-dependent and develops over time. The diffusion of 4HR through the outer and inner E. coli membranes is studied by molecular dynamic methods in the full-atomic approximation. The process of 4HR transport through the lipid bilayer and the porin protein channel is studied by the methods of controlled molecular dynamics and umbrella sampling. It is shown that 4HR affects the membrane density. It freely penetrates into the bilayer located parallel to the lipid molecules at the junction of hydrophilic polar heads and hydrophobic tails. The diffusion of 4HR into the cell is more likely to occur directly through the lipid bilayer rather than the porin channel: 4HR and its clusters can bind to the L6 loop of the porin, switching the channel into the closed state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. O. V. Bukharin, A. L. Gintsburg, Yu. M. Romanova, and G. I. El’-Registan, Bacterial Survival Mechanisms (Meditsina, Moscow, 2005) [in Russian].

    Google Scholar 

  2. E. M. Windels, B. van den Bergh, and J. Michiels, PLoS Pathog. 16 (5), e1008431 (2020). https://doi.org/10.1371/journal.ppat.1008431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Y. A. Nikolaev, A. V. Tutel’yan, N. G. Loiko, et al., PLoS One 15 (9), e0239147 (2020). https://doi.org/10.1371/journal.pone.0239147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. G. Tkachenko, Molecular Mechanisms of Stress Responses in Microorganisms (UrO RAN, Yekaterinburg, 2012) [in Russian].

    Google Scholar 

  5. A. Minsky, E. Shimoni, and D. Frenkiel-Krispin, Nat. Rev. Mol. Cell Biol. 3 (1), 50 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. N. Loiko, Y. Danilova, A. Moiseenko, et al., PLoS One 15, e0231562 (2020). https://doi.org/10.1371/journal.pone.0231562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. G. I. El-Registan, A. Mulyukin, Yu. A. Nikolaev, N. E. Suzina, V. F. Gal’chenko, and V. I. Duda, Microbiology 75, 380 (2006).

    Article  CAS  Google Scholar 

  8. A. Kozubek and J. H. Tyman, Chem. Rev. 99, 1 (1999). https://doi.org/10.1021/cr970464o

    Article  CAS  PubMed  Google Scholar 

  9. N. G. Loiko, A. L. Mulyukin, A. N. Kozlova, A. P. Kaplun, V. V. Sorokin, I. A. Borzenkov, Yu. A. Nikolaev, A. S. Kaprel’yants, and G. I. El’-Registan, Appl. Biochem. Microbiol. 45, 162 (2009).

    Article  CAS  Google Scholar 

  10. Yu. F. Kpupyanckii, P. P. Knox, N. G. Loiko, E. G. Abdulnasirov, O. A. Korotina, S. A. Stepanov, N. I. Zakharova, Yu. A. Nikolaev, G. I. El’-Registan, and A. B. Rubin, Biophysics 56, 8 (2011).

    Article  Google Scholar 

  11. Yu. F. Krupyanskii, E. G. Abdulnasyrov, N. G. Loiko, A. S. Stepanov, K. B. Tereshkina, and G. I. El’-Registan, Russ. J. Phys. Chem. B 6, 301 (2012).

    Article  CAS  Google Scholar 

  12. K. B. Tereshkina, A. S. Stepanov, D. O. Sinitsyn, and Yu. F. Krupyanskii, Russ. J. Phys. Chem. B 8, 534 (2014). https://doi.org/10.1134/S1990793114040137

    Article  CAS  Google Scholar 

  13. O. K. Davydova, D. G. Deryabin, A. I. Nikiyan, and G. I. El’-Registan, Microbiology 74, 533 (2005).

    Article  CAS  Google Scholar 

  14. A. L. Mulyukin, V. V. Sorokin, N. G. Loiko, N. E. Suzina, V. I. Duda, E. A. Vorob’eva, and G. I. El’-Registan, Microbiology 71, 31 (2002).

    Article  CAS  Google Scholar 

  15. N. G. Loiko, N. A. Kryazhevskikh, N. E. Suzina, E. V. Demkina, A. Yu. Muratova, O. V. Turkovskaya, A. N. Kozlova, V. F. Galchenko, and G. I. El’-Registan, Microbiology 80, 472 (2011).

    Article  CAS  Google Scholar 

  16. N. E. Suzina, A. L. Mulyukin, N. G. Loiko, A. N. Kozlova, V. V. Dmitriev, A. P. Shorokhova, V. M. Gorlenko, V. I. Duda, and G. I. El’-Registan, Microbiology 70, 667 (2001).

    Article  CAS  Google Scholar 

  17. W. E. Levinson, Review of Medical Microbiology and Immunology, 11th ed. (McGraw-Hill Lange Medical Books, New York, 2010).

    Google Scholar 

  18. M. Grabowicz and T. J. Silhavy, Trends Biochem. Sci. 42, 232 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. H. I. Zgurskaya, C. A. Löpez, and S. Gnanakaran, ACS Infect. Dis. 1 (11), 512 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. I. Miller and N. R. Salama, PLoS Biol. 16, e2004935 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Z. Breijyeh, B. Jubeh, and R. Karaman, Molecules 25, 1340 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  22. O. Yildiz, K. R. Vinothkumar, P. Goswami, and W. Kuhlbrandt, EMBO J. 25, 3702 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Vol. 1 of Computational Science Series (Academic, New York, 2001).

  24. Yu. F. Krupyanskii, N. K. Balabaev, T. E. Petrova, D. O. Sinitsyn, E. V. Gryzlova, K. B. Tereshkina, E. G. Abdulnasyrov, A. S. Stepanov, V. Yu. Lunin, and A. N. Grum-Grzhimailo, Russ. J. Phys. Chem. B 8, 445 (2014). https://doi.org/10.1134/S1990793114040046

    Article  CAS  Google Scholar 

  25. A. Moiseenko, N. Loiko, K. Tereshkina, et al., Biochem. Biophys. Res. Commun. 517, 463 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. E. V. Tereshkin, K. B. Tereshkina, V. V. Kovalenko, N. G. Loiko and Yu. F. Krupyanskii, Russ. J. Phys. Chem. B 13, 769 (2019).

    Article  CAS  Google Scholar 

  27. E. Tereshkin, K. Tereshkina, N. Loiko, et al., J. Biomol. Struct. Dyn. 37, 2600 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. E. V. Tereshkin, K. B. Tereshkina, and Yu. F. Krupyanskii, Aktual. Vopr. Biol. Fiz. Khim. 5, 619 (2020).

    Google Scholar 

  29. D. Szatmári, P. Sárkány, B. Kocsis, et al., Sci. Rep. 10, 12002 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. J. Lee, X. Cheng, J. M. Swails, et al., J. Chem. Theory Comput. 12, 405 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. D. S. Gupta, J. Bacteriol. 174, 7963 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. S. W. Cowan, R. M. Garavito, J. N. Jansonius, et al., Structure 3, 1041 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. C. Sohlenkamp and O. Geiger, FEMS Microbiol. Rev. 40, 133 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. D. Liu and P. R. Reeves, Microbiology (Reading, UK) 140, 49 (1994).

    Article  CAS  Google Scholar 

  35. A. A. Granovsky, Firefly, Version 8.2.0. http://classic. chem.msu.su/gran/firefly/index.html.

  36. M. A. Spackman, J. Comput. Chem. 17, 1 (1996).

    Article  CAS  Google Scholar 

  37. I. Ivani, P. D. Dans, A. Noy, et al., Nat. Methods 13, 55 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. J. Lee, D. S. Patel, J. Ståhle, et al., J. Chem. Theory Comput. 15, 775 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. J. P. M. Jämbeck and A. P. Lyubartsev, J. Chem. Theory Comput. 8, 2938 (2012).

    Article  PubMed  Google Scholar 

  41. C. Anezo, A. H. de Vries, H. D. Holtje, et al., J. Phys. Chem. B 107, 9424 (2003).

    Article  CAS  Google Scholar 

  42. E. F. Pettersen, T. D. Goddard, C. C. Huang, et al., J. Comput. Chem. 25, 1605 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. S. Kumar, J. M. Rosenberg, D. Bouzida, et al., J. Comput. Chem. 13, 1011 (1992).

    Article  CAS  Google Scholar 

  45. J. S. Hub, B. L. de Groot, and D. van der Spoel, J. Chem. Theory Comput. 6, 3713 (2010).

    Article  CAS  Google Scholar 

  46. N. Kucerka, B. W. Holland, C. G. Gray, et al., J. Phys. Chem. B 116, 232 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. J. F. Nagle and S. Tristram-Nagle, Biochim. Biophys. Acta Rev. Biomembr. 1469, 159 (2000).

    Article  CAS  Google Scholar 

  48. D. E. Elmore, FEBS Lett. 580, 144 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. W. Zhao, T. Rog, A. A. Gurtovenko, et al., Biochimie 90, 930 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The computations were carried out on MVS-10P at Joint Supercomputer Center of the Russian Academy of Sciences (JSCC RAS). This study was carried out as part of a state assignment of the Ministry of Education and Science of Russia (topic 0082-2019-0015, registration numbers AAAA-A20-120031490003-7 and AAAA-A19-119021490112-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Tereshkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshkin, E.V., Loiko, N.G., Tereshkina, K.B. et al. Migration of 4-Hexylresorcinol Through Escherichia coli Cell Membranes. Russ. J. Phys. Chem. B 15, 1026–1035 (2021). https://doi.org/10.1134/S1990793121060099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121060099

Keywords:

Navigation