Skip to main content

Advertisement

Log in

Cardiomyocytes are Protected from Antiretroviral Nucleoside Analog-Induced Mitochondrial Toxicity by Overexpression of PGC-1α

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The nucleoside reverse transcriptase inhibitors (NRTIs), used for treatment of the human immunodeficiency virus-1, compromise mitochondria in cardiomyocytes and other host cells, limiting the clinical use of these drugs. To explore underlying mechanisms, we overexpressed PGC-1α, a master regulator of mitochondrial biogenesis, twofold in H9c2 rat cardiomyocyte cultures, hypothesizing that this might protect the mitochondria from damage induced by the NRTI combination zidovudine (AZT) and didanosine (ddI). The experimental groups, evaluated during 16 passages (P) of drug exposure, included: PGC-1α-overexpressing cells with no exposure, or exposure to 50 µM AZT plus 50 µM ddI; and control cells with no exposure or exposure to the same doses of AZT and ddI. The AZT/ddI combination caused a growth inhibition of 15–20 % in control cells, but none in PGC-1α cells. Apoptosis was highest in AZT/ddI-exposed control cells, and PGC-1α overexpression protected cells from AZT/ddI-induced apoptosis. At P3, P6, P8, and P12, uncoupled mitochondrial oxygen consumption rate, determined by Seahorse 24 XF Analyzer, as higher in AZT/ddI-exposed PGC-1α cells, compared to AZT/ddI-exposed control cells (p < 0.05 at all P). Complex I activity was higher in AZT/ddI-exposed PGC-1α overexpressing cells than that in AZT/ddI-exposed control cells (p < 0.05), and reactive oxygen species levels were lower in PGC-1α overexpressing cells than that in control cells (p < 0.05) when both were exposed to AZT/ddI. Taken together, these experiments show proof of concept that overexpression of PGC-1α protects cardiomyocytes from NRTI-induced toxicity, and suggest that a pharmaceutical agent with similar activity may protect against NRTI-induced mitochondrial toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AZT:

Zidovudine, 3′-azido-3′-deoxythymidine

ddI:

Didanosine, 2′, 3′-dideoxyinosine

DCFH:

Dichlorofluorescin diacetate

FCCP:

Carbonyl cyanide p-trifluoromethoxy-phenylhydroazone

HIV-1:

Human immunodeficiency virus 1

NRTI:

Nucleoside reverse transcriptase inhibitor

OCR:

Oxygen consumption rate

OLIGO:

Oligomycin

OXPHOS:

Oxidative phosphorylation

PARP:

Poly (ADP-ribose) polymerase

PBS:

Phosphate-buffered saline

PGC-1α:

Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha

ROS:

Reactive oxygen species

ROT:

Rotenone

References

  1. Wallace, K. B. (2008). Mitochondria off target of drug therapy. Trends in Pharmacological Sciences, 29, 361–366.

    Article  CAS  PubMed  Google Scholar 

  2. Blanche, S., Tardieu, M., Benhammou, V., Warszawski, J., & Rustin, P. (2006). Mitochondrial dysfunction following perinatal exposure to nucleoside analogues. AIDS, 20, 1685–1690.

    Article  PubMed  Google Scholar 

  3. Blanche, S., Tardieu, M., Rustin, P., Slama, A., Barret, B., Firtion, G., et al. (1999). Persistent mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues. Lancet, 354, 1084–1089.

    Article  CAS  PubMed  Google Scholar 

  4. Koczor, C. A., & Lewis, W. (2010). Nucleoside reverse transcriptase inhibitor toxicity and mitochondrial DNA. Expert opinion on drug metabolism & toxicology, 6, 1493–1504.

    Article  CAS  Google Scholar 

  5. Lewis, W. (2005). Nucleoside reverse transcriptase inhibitors, mitochondrial DNA and AIDS therapy. Antiviral Therapy, 10(Suppl 2), M13–M27.

    CAS  PubMed  Google Scholar 

  6. Kohler, J. J., & Lewis, W. (2007). A brief overview of mechanisms of mitochondrial toxicity from NRTIs. Environmental and Molecular Mutagenesis, 48, 166–172.

    Article  CAS  PubMed  Google Scholar 

  7. Poirier, M. C., Olivero, O. A., Walker, D. M., & Walker, V. E. (2004). Perinatal genotoxicity and carcinogenicity of anti-retroviral nucleoside analog drugs. Toxicology and Applied Pharmacology, 199, 151–161.

    Article  CAS  PubMed  Google Scholar 

  8. Anderson, P. L., Kakuda, T. N., & Lichtenstein, K. A. (2004). The cellular pharmacology of nucleoside- and nucleotide-analogue reverse-transcriptase inhibitors and its relationship to clinical toxicities. Clinical Infectious Diseases, 38, 743–753.

    Article  CAS  PubMed  Google Scholar 

  9. Lewis, W., Copeland, W. C., & Day, B. J. (2001). Mitochondrial dna depletion, oxidative stress, and mutation: mechanisms of dysfunction from nucleoside reverse transcriptase inhibitors. Laboratory Investigation, 81, 777–790.

    Article  CAS  PubMed  Google Scholar 

  10. Lewis, W., Day, B. J., & Copeland, W. C. (2003). Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nature Reviews Drug Discovery, 2, 812–822.

    Article  CAS  PubMed  Google Scholar 

  11. Leone, T. C., & Kelly, D. P. (2011). Transcriptional control of cardiac fuel metabolism and mitochondrial function. Cold Spring Harbor Symposia on Quantitative Biology, 76, 175–182.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Scarpulla, R. C. (2008). Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiological Reviews, 88, 611–638.

    Article  CAS  PubMed  Google Scholar 

  13. Aggeli, I. K., Beis, I., & Gaitanaki, C. (2008). Oxidative stress and calpain inhibition induce alpha B-crystallin phosphorylation via p38-MAPK and calcium signalling pathways in H9c2 cells. Cellular Signalling, 20, 1292–1302.

    Article  CAS  PubMed  Google Scholar 

  14. Liu, Y., Borchert, G. L., Surazynski, A., & Phang, J. M. (2008). Proline oxidase, a p53-induced gene, targets COX-2/PGE2 signaling to induce apoptosis and inhibit tumor growth in colorectal cancers. Oncogene, 27, 6729–6737.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Y., Nguyen, P., Baris, T. Z., & Poirier, M. C. (2012). Molecular analysis of mitochondrial compromise in rodent cardiomyocytes exposed long term to nucleoside reverse transcriptase inhibitors (NRTIs). Cardiovascular Toxicology, 12, 123–134.

    Article  PubMed  Google Scholar 

  16. Lu, Z., Xu, X., Hu, X., Fassett, J., Zhu, G., Tao, Y., et al. (2010). PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxidants & Redox Signaling, 13, 1011–1022.

    Article  CAS  Google Scholar 

  17. Schilling, J., & Kelly, D. P. (2011). The PGC-1 cascade as a therapeutic target for heart failure. Journal of Molecular and Cellular Cardiology, 51, 578–583.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. St-Pierre, J., Drori, S., Uldry, M., Silvaggi, J. M., Rhee, J., Jager, S., et al. (2006). Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 127, 397–408.

    Article  CAS  PubMed  Google Scholar 

  19. Rasbach, K. A., & Schnellmann, R. G. (2007). Signaling of mitochondrial biogenesis following oxidant injury. Journal of Biological Chemistry, 282, 2355–2362.

    Article  CAS  PubMed  Google Scholar 

  20. Rowe, G. C., Jiang, A., & Arany, Z. (2010). PGC-1 coactivators in cardiac development and disease. Circulation Research, 107, 825–838.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Schon, E. A., DiMauro, S., Hirano, M., & Gilkerson, R. W. (2010). Therapeutic prospects for mitochondrial disease. Trends in Molecular Medicine, 16, 268–276.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lai, L., Leone, T. C., Zechner, C., Schaeffer, P. J., Kelly, S. M., Flanagan, D. P., et al. (2008). Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes & Development, 22, 1948–1961.

    Article  CAS  Google Scholar 

  23. Lehman, J. J., Barger, P. M., Kovacs, A., Saffitz, J. E., Medeiros, D. M., & Kelly, D. P. (2000). Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. The Journal of Clinical Investigation, 106, 847–856.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lehman, J. J., & Kelly, D. P. (2002). Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. Heart Failure Reviews, 7, 175–185.

    Article  CAS  PubMed  Google Scholar 

  25. Sihag, S., Cresci, S., Li, A. Y., Sucharov, C. C., & Lehman, J. J. (2009). PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. Journal of Molecular and Cellular Cardiology, 46, 201–212.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lee, H. C., & Wei, Y. H. (2005). Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. International Journal of Biochemistry & Cell Biology, 37, 822–834.

    Article  CAS  Google Scholar 

  27. Dam, A. D., Mitchell, A. S., & Quadrilatero, J. (2013). Induction of mitochondrial biogenesis protects against caspase-dependent and caspase-independent apoptosis in L6 myoblasts. Biochimica et Biophysica Acta, 1833, 3426–3435.

    Article  CAS  PubMed  Google Scholar 

  28. Patten, I. S., & Arany, Z. (2012). PGC-1 coactivators in the cardiovascular system. Trends in Endocrinology and Metabolism: TEM, 23, 90–97.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, Y., Shim, E., Nguyen, P., Gibbons, A. T., Mitchell, J. B., & Poirier, M. C. (2014). Tempol protects cardiomyocytes from nucleoside reverse transcriptase inhibitor-induced mitochondrial toxicity. Toxicological Sciences, 139, 133–141.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Bastin, J., Aubey, F., Rotig, A., Munnich, A., & Djouadi, F. (2008). Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cell lacking its components. Journal of Clinical Endocrinology and Metabolism, 93, 1433–1441.

    Article  CAS  PubMed  Google Scholar 

  31. Hondares, E., Mora, O., Yubero, P., de la Concepcion, M. R., Iglesias, R., Giralt, M., et al. (2006). Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation. Endocrinology, 147, 2829–2838.

    Article  CAS  PubMed  Google Scholar 

  32. Johri, A., Calingasan, N. Y., Hennessey, T. M., Sharma, A., Yang, L., Wille, E., et al. (2012). Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Human Molecular Genetics, 21, 1124–1137.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Intramural Research Program of the Center for Cancer Research, National Cancer Institute, NIH. The content of this publication does not necessarily reflect the views or policies of the US Department of Health and Human Services, nor does the mention of trade names, commercial products, or organizations imply endorsement by the US Government. We wish to thank Alexandra Michalowski for statistical support.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongmin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Shim, E., Crespo-Mejias, Y. et al. Cardiomyocytes are Protected from Antiretroviral Nucleoside Analog-Induced Mitochondrial Toxicity by Overexpression of PGC-1α. Cardiovasc Toxicol 15, 224–231 (2015). https://doi.org/10.1007/s12012-014-9288-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-014-9288-5

Keywords

Navigation