Skip to main content

Advertisement

Log in

Human Stem Cell-Derived Cardiomyocytes in Cellular Impedance Assays: Bringing Cardiotoxicity Screening to the Front Line

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cardiovascular (CV) toxicity is a leading cause of drug attrition and withdrawal. Introducing in vitro assays with higher throughput should permit earlier CV hazard identification and enable medicinal chemists to design-out liabilities. Heretofore, development of in vitro CV assays has been limited by the challenge of replicating integrated cardiovascular physiology while achieving the throughput and consistency required for screening. These challenges appear to be met with a combination of human stem cell-derived cardiomyocytes (CM) which beat spontaneously and monitoring the response with technology that can assess drug-induced changes in voltage dependent contraction such as cellular impedance which has been validated with excellent predictivity for drug-induced arrhythmia and contractility. Here, we review advances in cardiomyocyte impedance with emphasis on stem cell-derived cardiomyocyte models for toxicity screening. Key perspectives include: the electrical principles of impedance technology, impedance detection of cardiomyocyte beating, beat parameter selection/analysis, validation in toxicity and drug discovery, and future directions. As a conclusion, an in vitro screening cascade is proffered using the downstream, inclusive detection of CM impedance assays as a primary screen followed by complementary CM assays chosen to enable mechanism-appropriate follow-up. The combined approach will enhance testing for CV liabilities prior to traditional in vivo models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shah, R. R. (2006). Can pharmacogenetics help rescue drugs withdrawn from the market? Pharmacogenomics, 6, 889–908.

    Article  Google Scholar 

  2. McGuinness, R. P., Proctor, J. M., Gallant, D. L., van Staden, C. J., Ly, J. T., Tang, F. L., et al. (2009). Enhanced selectivity screening of GPCR ligands using a label-free cell based assay technology. Combinational Chemistry and High Throughput Screening, 12(8), 812–823.

  3. Stevens, J. L., & Baker, T. K. (2009). The future of drug safety testing: Expanding the view and narrowing the focus. Drug Discovery Today, 3–4, 162–167.

    Article  Google Scholar 

  4. Ciambrone, G. J., Liu, V. F., Lin, D. C., McGuinness, R. P., Leung, G. K., & Pitchford, S. (2004). Cellular dielectric spectroscopy: A powerful new approach to label-free cellular analysis. Journal of Biomolecular Screening, 6, 467–480.

    Article  Google Scholar 

  5. Giaever, I., & Keese, C. R. (1991). Micromotion of mammalian cells measured electrically. Proceedings of the National Academy of Science, 17, 7896–7900.

    Article  Google Scholar 

  6. Scott, C. W., & Peters, M. F. (2010). Label-free whole-cell assays: Expanding the scope of GPCR screening. Drug Discovery Today, 17–18, 704–716.

    Article  Google Scholar 

  7. Xi, B., Wang, T., Li, N., Ouyang, W., Zhang, W., Wu, J., et al. (2011). Functional cardiotoxicity profiling and screening using the xCELLigence RTCA Cardio System. Journal of the Association for Laboratory Automation, 6, 415–421.

    Article  Google Scholar 

  8. Abassi, Y. A., Xi, B., Li, N., Ouyang, W., Seiler, A., Watzele, M., et al. (2012). Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment. British Journal of Pharmacology, 5, 1424–1441.

    Article  Google Scholar 

  9. Guo, L., Abrams, R. M., Babiarz, J. E., Cohen, J. D., Kameoka, S., Sanders, M. J., et al. (2011). Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicological Sciences, 1, 281–289.

    Article  Google Scholar 

  10. Parsons, J. T., Horwitz, A. R., & Schwartz, M. A. (2010). Cell adhesion: Integrating cytoskeletal dynamics and cellular tension. Nature Reviews Molecular Cell Biology, 9, 633–643.

    Article  Google Scholar 

  11. Layland, J., & Kentish, J. C. (1999). Positive force- and [Ca2+]i-frequency relationships in rat ventricular trabeculae at physiological frequencies. American Journal of Physiology, 1(Pt 2), H9–H18.

    Google Scholar 

  12. Lieu, D. K., Liu, J., Siu, C. W., McNerney, G. P., Tse, H. F., Abu-Khalil, A., et al. (2009). Absence of transverse tubules contributes to non-uniform Ca(2+) wavefronts in mouse and human embryonic stem cell-derived cardiomyocytes. Stem Cells and Development, 10, 1493–1500.

    Article  Google Scholar 

  13. Delcarpio, J. B., Claycomb, W. C., & Moses, R. L. (1989). Ultrastructural morphometric analysis of cultured neonatal and adult rat ventricular cardiac muscle cells. American Journal of Anatomy, 4, 335–345.

    Article  Google Scholar 

  14. Germanguz, I., Sedan, O., Zeevi-Levin, N., Shtrichman, R., Barak, E., Ziskind, A., et al. (2011). Molecular characterization and functional properties of cardiomyocytes derived from human inducible pluripotent stem cells. Journal of Cellular and Molecular Medicine, 1, 38–51.

    Article  Google Scholar 

  15. Dibb, K. M., Eisner, D. A., & Trafford, A. W. (2007). Regulation of systolic [Ca2+]i and cellular Ca2+ flux balance in rat ventricular myocytes by SR Ca2+ L-type Ca2+ current and diastolic [Ca2+]i. The Journal of Physiology, 2, 579–592.

    Article  Google Scholar 

  16. Korhonen, T., Hanninen, S. L., & Tavi, P. (2009). Model of excitation-contraction coupling of rat neonatal ventricular myocytes. Biophysical Journal, 3, 1189–1209.

    Article  Google Scholar 

  17. Peters, M. F., Scott, C. W., Ochalski, R., & Dragan, Y. P. (2012). Evaluation of cellular impedance measures of cardiomyocyte cultures for drug screening applications. Assay and Drug Development Technologies, 6, 525–532.

    Article  Google Scholar 

  18. Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J., & Kroemer, G. (2011). Cell death assays for drug discovery. Nature Reviews Drug Discovery, 3, 221–237.

    Article  Google Scholar 

  19. Lamore, S. D., Kamendi, H. W., Scott, C. W., Dragan, Y. P., & Peters, M. F. (2013). Cellular impedance assays for predictive preclinical drug screening of kinase inhibitor cardiovascular toxicity. Toxicological Sciences, 2, 402–413.

    Article  Google Scholar 

  20. Sirenko, O., Crittenden, C., Callamaras, N., Hesley, J., Chen, Y. W., Funes, C., et al. (2013). Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells. Journal of Biomolecular Screening, 1, 39–53.

    Article  Google Scholar 

  21. Schiller, L. R., & Johnson, D. A. (2008). Balancing drug risk and benefit: Toward refining the process of FDA decisions affecting patient care. American Journal of Gastroenterology, 4, 815–819.

    Article  Google Scholar 

  22. Redfern, W. S., Carlsson, L., Davis, A. S., Lynch, W. G., MacKenzie, I., Palethorpe, S., et al. (2003). Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: Evidence for a provisional safety margin in drug development. Cardiovascular Research, 1, 32–45.

    Article  Google Scholar 

  23. Lu, H. R., Vlaminckx, E., Hermans, A. N., Rohrbacher, J., Van Ammel, K., Towart, R., et al. (2008). Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines. British Journal of Pharmacology, 7, 1427–1438.

    Article  Google Scholar 

  24. Guo, L., Coyle, L., Abrams, R. M., Kemper, R., Chiao, E. T., & Kolaja, K. L. (2013). Refining the human iPSC-cardiomyocyte arrhythmic risk assessment model. Toxicological Sciences, 2, 581–594.

    Article  Google Scholar 

  25. Gintant, G. (2011). An evaluation of hERG current assay performance: Translating preclinical safety studies to clinical QT prolongation. Pharmacology & Therapeutics, 2, 109–119.

    Article  Google Scholar 

  26. Sager, P. T., Gintant, G., Turner, J. R., Pettit, S., & Stockbridge, N. (2014). Rechanneling the cardiac proarrhythmia safety paradigm: A meeting report from the cardiac safety research consortium. American Heart Journal, 3, 292–300.

    Article  Google Scholar 

  27. Jonsson, M. K., Wang, Q. D., & Becker, B. (2011). Impedance-based detection of beating rhythm and proarrhythmic effects of compounds on stem cell-derived cardiomyocytes. Assay and Drug Development Technologies, 6, 589–599.

    Article  Google Scholar 

  28. Nguemo, F., Saric, T., Pfannkuche, K., Watzele, M., Reppel, M., & Hescheler, J. (2012). In vitro model for assessing arrhythmogenic properties of drugs based on high-resolution impedance measurements. Cellular Physiology and Biochemistry, 5–6, 819–832.

    Article  Google Scholar 

  29. Chi, K. R. (2013). Regulatory watch: Speedy validation sought for new cardiotoxicity testing strategy. Nature Reviews Drug Discovery, 9, 655.

    Article  Google Scholar 

  30. Mellor, H. R., Bell, A. R., Valentin, J. P., & Roberts, R. R. (2011). Cardiotoxicity associated with targeting kinase pathways in cancer. Toxicological Sciences, 1, 14–32.

    Article  Google Scholar 

  31. Harmer, A. R., Abi-Gerges, N., Morton, M. J., Pullen, G. F., Valentin, J. P., & Pollard, C. E. (2012). Validation of an in vitro contractility assay using canine ventricular myocytes. Toxicology and Applied Pharmacology, 2, 162–172.

    Article  Google Scholar 

  32. Force, T., & Kolaja, K. L. (2011). Cardiotoxicity of kinase inhibitors: The prediction and translation of preclinical models to clinical outcomes. Nature Reviews Drug Discovery, 2, 111–126.

    Article  Google Scholar 

  33. Doherty, K. R., Wappel, R. L., Talbert, D. R., Trusk, P. B., Moran, D. M., Kramer, J. W., et al. (2013). Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicology and Applied Pharmacology, 1, 245–255.

    Article  Google Scholar 

  34. Cohen, J. D., Babiarz, J. E., Abrams, R. M., Guo, L., Kameoka, S., Chiao, E., et al. (2011). Use of human stem cell derived cardiomyocytes to examine sunitinib mediated cardiotoxicity and electrophysiological alterations. Toxicology and Applied Pharmacology, 1, 74–83.

    Article  Google Scholar 

  35. Lim, J., Taoka, B. M., Lee, S., Northrup, A., Altman, M., Sloman, D., et al. (2011). Pyrazolo[1,5-A]pyrimidines as MARK inhibitors. World Patent WO 2011/087999 A1, 21 July 2011.

  36. Anastassiadis, T., Deacon, S. W., Devarajan, K., Ma, H., & Peterson, J. R. (2011). Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nature Biotechnology, 11, 1039–1045.

    Article  Google Scholar 

  37. Davis, M. I., Hunt, J. P., Herrgard, S., Ciceri, P., Wodicka, L. M., Pallares, G., et al. (2011). Comprehensive analysis of kinase inhibitor selectivity. Nature Biotechnology, 11, 1046–1051.

    Article  Google Scholar 

  38. Carlson, C., Koonce, C., Aoyama, N., Einhorn, S., Fiene, S., Thompson, A., et al. (2013). Phenotypic screening with human iPS cell-derived cardiomyocytes: HTS-compatible assays for interrogating cardiac hypertrophy. Journal of Biomolecular Screening, 10, 1203–1211.

    Article  Google Scholar 

  39. Satoh, H., Delbridge, L. M., Blatter, L. A., & Bers, D. M. (1996). Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: Species-dependence and developmental effects. Biophysical Journal, 3, 1494–1504.

    Article  Google Scholar 

  40. Feinberg, A. W., Alford, P. W., Jin, H., Ripplinger, C. M., Werdich, A. A., Sheehy, S. P., et al. (2012). Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture. Biomaterials, 23, 5732–5741.

    Article  Google Scholar 

  41. Blazeski, A., Zhu, R., Hunter, D. W., Weinberg, S. H., Zambidis, E. T., & Tung, L. (2012). Cardiomyocytes derived from human induced pluripotent stem cells as models for normal and diseased cardiac electrophysiology and contractility. Progress in Biophysics and Molecular Biology, 2–3, 166–177.

    Article  Google Scholar 

  42. Uppal H. (2013). Harnessing stem cells for predictive toxicology: Meeting the challenges of drug discovery today. http://webinar.sciencemag.org/webinar/archive/harnessing-stem-cells-predictive-toxicology#speaker-bio-467. Accessed July 17, 2013.

  43. Laverty, H., Benson, C., Cartwright, E., Cross, M., Garland, C., Hammond, T., et al. (2011). How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines? British Journal of Pharmacology, 4, 675–693.

    Article  Google Scholar 

  44. Liang, P., Lan, F., Lee, A. S., Gong, T., Sanchez-Freire, V., Wang, Y., et al. (2013). Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation, 16, 1677–1691.

    Article  Google Scholar 

  45. Harris, K., Aylott, M., Cui, Y., Louttit, J. B., McMahon, N. C., & Sridhar, A. (2013). Comparison of electrophysiological data from human-induced pluripotent stem cell-derived cardiomyocytes to functional preclinical safety assays. Toxicological Sciences, 2, 412–426.

    Article  Google Scholar 

  46. Navarrete, E. G., Liang, P., Lan, F., Sanchez-Freire, V., Simmons, C., Gong, T., et al. (2013). Screening drug-induced arrhythmia events using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays. Circulation, 11(Suppl 1), S3–S13.

    Article  Google Scholar 

  47. Sirenko, O., Cromwell, E. F., Crittenden, C., Wignall, J. A., Wright, F. A., & Rusyn, I. (2013). Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity. Toxicology and Applied Pharmacology, 3, 500–507.

    Article  Google Scholar 

  48. Cerignoli, F., Charlot, D., Whittaker, R., Ingermanson, R., Gehalot, P., Savchenko, A., et al. (2012). High throughput measurement of Ca(2)(+) dynamics for drug risk assessment in human stem cell-derived cardiomyocytes by kinetic image cytometry. Journal of Pharmacological and Toxicological Methods, 3, 246–256.

    Article  Google Scholar 

  49. Alford, P. W., Feinberg, A. W., Sheehy, S. P., & Parker, K. K. (2010). Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials, 13, 3613–3621.

    Article  Google Scholar 

  50. Pointon, A., Abi-Gerges, N., Cross, M. J., & Sidaway, J. E. (2013). Phenotypic profiling of structural cardiotoxins in vitro reveals dependency on multiple mechanisms of toxicity. Toxicological Sciences, 2, 317–326.

    Article  Google Scholar 

  51. Bers, D. M. (2002). Cardiac excitation-contraction coupling. Nature, 6868, 198–205.

    Article  Google Scholar 

  52. Scott, C. W., Peters, M. F., & Dragan, Y. P. (2013). Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicology Letters, 1, 49–58.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Charlie Keese and Xiaobo Wang for comments on Sect. 2 and Amy Pointon for calcium flux data in Fig. 2. This work has been funded in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew F. Peters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, M.F., Lamore, S.D., Guo, L. et al. Human Stem Cell-Derived Cardiomyocytes in Cellular Impedance Assays: Bringing Cardiotoxicity Screening to the Front Line. Cardiovasc Toxicol 15, 127–139 (2015). https://doi.org/10.1007/s12012-014-9268-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-014-9268-9

Keywords

Navigation